Citation: Yu-Hang LI, Peng WANG, Chong-Chen WANG, Yan-Biao LIU. State-Of-The-Art Review of Defective Metal-Organic Frameworks for Pollutant Removal from Water[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2342-2362. doi: 10.11862/CJIC.2022.252 shu

State-Of-The-Art Review of Defective Metal-Organic Frameworks for Pollutant Removal from Water

Figures(13)

  • Defect engineering is an effective strategy for modulating the structure of metal-organic frameworks (MOFs) to boost their performance in water treatment. The defect can be formed when the regular periodic arrangement of atoms or ions in the crystalline parent framework is broken due to the missing or dislocation of atoms or ions. In the field of defective MOFs, the types of defects are divided into (ⅰ) missing linker defects, (ⅱ) modified linker defects, (ⅲ) missing node defects, and (ⅳ) modified node defects. Although the construction of defective MOFs has received continuous attention, which remains challenging today. Up to now, there are two synthetic pathways to fabricate defective MOFs: the modulation during the synthesis process and the post-synthetic treatment methods. Specifically, defective MOFs can be fabricated by adjusting the synthesis conditions (temperature, the ratio of metal/ligand, etc.), introducing modulators, thermal activation, metal node substitution, and so on. Many advanced techniques like X-ray diffraction (XRD), specific surface area analysis, thermogravimetric analyses-differential scanning calorimetry (TGA-DSC), electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), high-resolution transmission electron microscopy (HR-TEM), spherical aberration-corrected transmission electron microscope (AC-TEM), and X-ray absorption spectroscopy (XAS) can effectively affirm the defective structure of MOFs. In the field of water remediation, the construction of defective MOFs can boost their performance of advanced oxidation processes like photocatalysis, persulfate (PS) activation, and photo-Fenton by enhancing separation rates of photoinduced electron-hole, promoting the photoelectron transfer and narrowing the band gap compared with pristine MOFs. Moreover, because the defective sites are introduced in the framework, they act as dominant active sites in the PS system, promoting the generation of radicals and creating a nonradical degradation pathway. Meanwhile, defective MOFs with rich unsaturated coordination centers can provide more adsorption sites toward pollutants, further enhancing the adsorption capacities and rates of sorbents. This review summarized the fabrications, characterizations, and applications in the water treatment of defective MOFs. Meanwhile, the prospects of defective MOFs for pollutant removal from water are proposed in this review.
  • 加载中
    1. [1]

      Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G S. Photocatalytic Organic Pollutants Degradation in Metal-Organic Frameworks[J]. Energy Environ. Sci., 2014,7(9):2831-2867. doi: 10.1039/C4EE01299B

    2. [2]

      Zhou H C, Jeffrey R L, Yaghi O M. Introduction to Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):673-674. doi: 10.1021/cr300014x

    3. [3]

      Du X D, Wang S, Ye F, Zhang Q R. Derivatives of Metal-Organic Frameworks for Heterogeneous Fentonlike Processes: From Preparation to Performance and Mechanisms in Wastewater Purification—A Mini Review[J]. Environ. Res., 2022,206112414. doi: 10.1016/j.envres.2021.112414

    4. [4]

      Du X D, Zhou M H. Strategies to Enhance Catalytic Performance of Metal-Organic Frameworks in Sulfate Radical-Based Advanced Oxidation Processes for Organic Pollutants Removal[J]. Chem. Eng. J., 2021,403126346. doi: 10.1016/j.cej.2020.126346

    5. [5]

      Li Y H, Yi X H, Li Y X, Wang C C, Wang P, Zhao C, Zheng W W. Robust Cr(Ⅵ) Reduction over Hydroxyl Modified UiO-66 Photocatalyst Constructed from Mixed Ligands: Performances and Mechanism Insight with or without Tartaric Acid[J]. Environ. Res., 2021,201111596. doi: 10.1016/j.envres.2021.111596

    6. [6]

      Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Efficient Removal of Emerging Organic Contaminants via Photo-Fenton Process over Micron-Sized Fe-MOF Sheet[J]. Chem. Eng. J., 2022,429132495. doi: 10.1016/j.cej.2021.132495

    7. [7]

      YI X H, WANG C C. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process over Iron-Based MOFs and Their Composites[J]. Prog. Chem., 2021,33(3):471-489.  

    8. [8]

      ZHOU Y C, WANG C C, WANG P, FU H F, ZHAO C. In-Situ Photochemical Reduction of Ag-UiO-66-NH2 Composite for Enhanced Photocatalytic Performance[J]. Chinese J. Inorg. Chem., 2020,36(11):2100-2112. doi: 10.11862/CJIC.2020.207

    9. [9]

      Murray L J, Dinca M, Long J R. Hydrogen Storage in Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2009,38(5):1294-1314. doi: 10.1039/b802256a

    10. [10]

      Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon Dioxide Capture in Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):724-781. doi: 10.1021/cr2003272

    11. [11]

      Daglar H, Gulbalkan H C, Avci G, Aksu G O, Altundal O F, Altintas C, Erucar I, Keskin S. Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs[J]. Angew. Chem. Int. Ed., 2021,60(14):7828-7837. doi: 10.1002/anie.202015250

    12. [12]

      Li C, Liu D H, Peng J, Du Q Z, He H. Ratiometric Fluorescence Sensing of Metal-Organic Frameworks: Tactics and Perspectives[J]. Coord. Chem. Rev., 2020,404213113. doi: 10.1016/j.ccr.2019.213113

    13. [13]

      Zhang Y Q, Sheng S S, Mao S, Wu X H, Li Z, Tao W Q, Jenkinson I R. Highly Sensitive and Selective Fluorescent Detection of Phosphate in Water Environment by a Functionalized Coordination Polymer[J]. Water Res., 2019,163114883. doi: 10.1016/j.watres.2019.114883

    14. [14]

      Yamada T, Otsubo K, Makiura R, Kitagawa H. Designer Coordination Polymers: Dimensional Crossover Architectures and Proton Conduction[J]. Chem. Soc. Rev., 2013,42(16):6655-6669. doi: 10.1039/c3cs60028a

    15. [15]

      Sadakiyo M, Okawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H. Promotion of Low-Humidity Proton Conduction by Controlling Hydrophilicity in Layered Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2012,134(12):5472-5475. doi: 10.1021/ja300122r

    16. [16]

      Meng X, Wang H N, Song S Y, Zhang H J. Proton-Conducting Crystalline Porous Materials[J]. Chem. Soc. Rev., 2017,46(2):464-480. doi: 10.1039/C6CS00528D

    17. [17]

      Wang C Y, Wang C C, Zhang X W, Ren X Y, Yu B Y, Wang P, Zhao Z X, Fu H F. A New Eu-MOF for Ratiometrically Fluorescent Detection toward Quinolone Antibiotics and Selective Detection toward Tetracycline Antibiotics[J]. Chin. Chem. Lett., 2022,33:1353-1357. doi: 10.1016/j.cclet.2021.08.095

    18. [18]

      Dhaka S, Kumar R, Deep A, Kurade M B, Ji S W, Jeon B H. Metal-Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments[J]. Coord. Chem. Rev., 2019,380:330-352. doi: 10.1016/j.ccr.2018.10.003

    19. [19]

      Ren X Y, Wang C C, Li Y, Wang C Y, Wang P, Gao S J. Ag Removal and Recovery from Wastewater Adopting NH2-MIL-125 as Efficient Adsorbent: A 3Rs (Reduce, Recycle and Reuse) Approach and Practice[J]. Chem. Eng. J., 2022,442136306. doi: 10.1016/j.cej.2022.136306

    20. [20]

      PANG D, WANG C C, WANG P, FU H F, ZHAO C. Efficiently Adsorptive Removal towards Roxarsone with ZIF-67[J]. Environmental Chemistry, 2020,39(6):1451-1463.  

    21. [21]

      Taddei M. When Defects Turn into Virtues: The Curious Case of Zirconium-Based Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2017,343:1-24. doi: 10.1016/j.ccr.2017.04.010

    22. [22]

      Chong S Y, Thiele G, Kim J. Excavating Hidden Adsorption Sites in Metal-Organic Frameworks Using Rational Defect Engineering[J]. Nat. Commun., 2017,8(1)1539. doi: 10.1038/s41467-017-01478-4

    23. [23]

      Dissegna S, Epp K, Heinz W R, Kieslich G, Fischer R A. Defective Metal-Organic Frameworks[J]. Adv. Mater., 2018,30(37)e1704501. doi: 10.1002/adma.201704501

    24. [24]

      Fang Z, Bueken B, De Vos D E, Fischer R A. Defect-Engineered Metal-Organic Frameworks[J]. Angew. Chem. Int. Ed., 2015,54(25):7234-7254. doi: 10.1002/anie.201411540

    25. [25]

      Shoaee M, Anderson M W, Attfield M P. Crystal Growth of the Nanoporous Metal-Organic Framework HKUST-1 Revealed by In Situ Atomic Force Microscopy[J]. Angew. Chem. Int. Ed., 2008,47(44):8525-8528. doi: 10.1002/anie.200803460

    26. [26]

      Ravon U, Savonnet M, Aguado S, Domine M E, Janneau E, Farrusseng D. Engineering of Coordination Polymers for Shape Selective Alkylation of Large Aromatics and the Role of Defects[J]. Microporous Mesoporous Mater., 2010,129(3):319-329. doi: 10.1016/j.micromeso.2009.06.008

    27. [27]

      Kirchon A, Li J L, Xia F Q, Day G S, Becker B, Chen W M, Sue H J, Fang Y, Zhou H C. Modulation Versus Templating: Fine-Tuning of Hierarchally Porous PCN-250 Using Fatty Acids to Engineer Guest Adsorption[J]. Angew. Chem. Int. Ed., 2019,58(36):12425-12430. doi: 10.1002/anie.201905006

    28. [28]

      Cai G R, Yan P, Zhang L L, Zhou H C, Jiang H L. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications[J]. Chem. Rev., 2021,121(20):12278-12326. doi: 10.1021/acs.chemrev.1c00243

    29. [29]

      Li M H, Liu Y B, Li F, Shen C S, Kaneti Y V, Yamauchi Y, Yuliarto B, Chen B, Wang C C. Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal[J]. Environ. Sci. Technol., 2021,55(19):13209-13218.

    30. [30]

      Zhao C, Pan X, Wang Z H, Wang C C. 1+1 > 2: A Critical Review of MOF/Bismuth-Based Semiconductor Composites for Boosted Photocatalysis[J]. Chem. Eng. J., 2021,417128022. doi: 10.1016/j.cej.2020.128022

    31. [31]

      Guo H S, Su S N, Liu Y, Ren X H, Guo W L. Enhanced Catalytic Activity of MIL-101(Fe) with Coordinatively Unsaturated Sites for Activating Persulfate to Degrade Organic Pollutants[J]. Environ. Sci. Pollut. Res., 2020,27(14):17194-17204. doi: 10.1007/s11356-020-08316-z

    32. [32]

      Cao J, Yang Z H, Xiong W P, Zhou Y Y, Peng Y R, Li X, Zhou C Y, Xu R, Zhang Y R. One-Step Synthesis of Co-Doped UiO-66 Nanoparticle with Enhanced Removal Efficiency of Tetracycline: Simultaneous Adsorption and Photocatalysis[J]. Chem. Eng. J., 2018,353:126-137. doi: 10.1016/j.cej.2018.07.060

    33. [33]

      Mo G L, Wang L X, Luo J H. Controlled Thermal Treatment of NH2-MIL-125(Ti) for Drastically Enhanced Photocatalytic Reduction of Cr(Ⅵ)[J]. Sep. Purif. Technol., 2021,277119643. doi: 10.1016/j.seppur.2021.119643

    34. [34]

      Wang Y X, Zhong Z, Muhammad Y, He H, Zhao Z X, Nie S X, Zhao Z X. Defect Engineering of NH2-MIL-88B(Fe) Using Different Monodentate Ligands for Enhancement of Photo-Fenton Catalytic Performance of Acetamiprid Degradation[J]. Chem. Eng. J., 2020,398125684. doi: 10.1016/j.cej.2020.125684

    35. [35]

      Hu P, Zhao Z X, Sun X D, Muhammad Y, Li J, Chen S B, Pang C J, Liao T T, Zhao Z X. Construction of Crystal Defect Sites in N-Coordinated UiO-66 via Mechanochemical In-Situ N-Doping Strategy for Highly Selective Adsorption of Cationic Dyes[J]. Chem. Eng. J., 2019,356:329-340. doi: 10.1016/j.cej.2018.09.060

    36. [36]

      Wißmann G, Schaate A, Lilienthal S, Bremer I, Schneider A M, Behrens P. Modulated Synthesis of Zr-Fumarate MOF[J]. Microporous Mesoporous Mater., 2012,152:64-70. doi: 10.1016/j.micromeso.2011.12.010

    37. [37]

      Vermoortele F, Bueken B, Le Bars G, Van de Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Van Speybroeck V, Kirschhock C, De Vos D E. Synthesis Modulation as a Tool to Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr)[J]. J. Am. Chem. Soc., 2013,135(31):11465-11468. doi: 10.1021/ja405078u

    38. [38]

      Shearer G C, Chavan S, Ethiraj J, Vitillo J G, Svelle S, Olsbye U, Lamberti C, Bordiga S, Lillerud K P. Tuned to Perfection: Ironing out the Defects in Metal-Organic Framework UiO-66[J]. Chem. Mater., 2014,26(14):4068-4071. doi: 10.1021/cm501859p

    39. [39]

      Fu M, Deng X P, Wang S Q, Yang F L, Lin L C, Zaworotko M J, Dong Y C. Scalable Robust Nano-Porous Zr-Based MOF Adsorbent with High-Capacity for Sustainable Water Purification[J]. Sep. Purif. Technol., 2022,288120620. doi: 10.1016/j.seppur.2022.120620

    40. [40]

      Zhang S P, Zhuo Y F, Ezugwu C I, Wang C C, Li C H, Liu S W. Synergetic Molecular Oxygen Activation and Catalytic Oxidation of Formaldehyde over Defective MIL-88B(Fe) Nanorods at Room Temperature[J]. Environ. Sci. Technol., 2021,55(12):8341-8350. doi: 10.1021/acs.est.1c01277

    41. [41]

      Marx S, Kleist W, Baiker A. Synthesis, Structural Properties, and Catalytic Behavior of Cu-BTC and Mixed-Linker Cu-BTC-Pydc in the Oxidation of Benzene Derivatives[J]. J. Catal., 2011,281(1):76-87. doi: 10.1016/j.jcat.2011.04.004

    42. [42]

      Kozachuk O, Luz I, Llabres i Xamena F X, Noei H, Kauer M, Albada H B, Bloch E D, Marler B, Wang Y, Muhler M, Fischer R A. Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties[J]. Angew. Chem. Int. Ed., 2014,53(27):7058-62. doi: 10.1002/anie.201311128

    43. [43]

      Feng Y, Chen Q, Jiang M Q, Yao J F. Tailoring the Properties of UiO-66 through Defect Engineering: A Review[J]. Ind. Eng. Chem. Res., 2019,58(38):17646-17659. doi: 10.1021/acs.iecr.9b03188

    44. [44]

      Yang J M, Ying R J, Han C X, Hu Q T, Xu H M, Li J H, Wang Q, Zhang W. Adsorptive Removal of Organic Dyes from Aqueous Solution by a Zr-Based Metal-Organic Framework: Effects of Ce Doping[J]. Dalton Trans., 2018,47(11):3913-3920. doi: 10.1039/C8DT00217G

    45. [45]

      Bakuru V R, Churipard S R, Maradur S P, Kalidindi S B. Exploring the Brønsted Acidity of UiO-66 (Zr, Ce, Hf) Metal-Organic Frame-works for Efficient Solketal Synthesis from Glycerol Acetalization[J]. Dalton Trans., 2019,48(3):843-847. doi: 10.1039/C8DT03512A

    46. [46]

      Nouar F, Breeze M I, Campo B C, Vimont A, Clet G, Daturi M, Devic T, Walton R I, Serre C. Tuning the Properties of the UiO-66 Metal Organic Framework by Ce Substitution[J]. Chem. Commun., 2015,51(77):14458-14461. doi: 10.1039/C5CC05072C

    47. [47]

      Min X, Wu X, Shao P, Ren Z, Ding L, Luo X. Ultra-High Capacity of Lanthanum-Doped UiO-66 for Phosphate Capture: Unusual Doping of Lanthanum by the Reduction of Coordination Number[J]. Chem. Eng. J., 2019,358:321-330. doi: 10.1016/j.cej.2018.10.043

    48. [48]

      Feng J F, Liu T F, Shi J, Gao S Y, Cao R. Dual-Emitting UiO-66 (Zr & Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing[J]. ACS Appl. Mater. Interfaces, 2018,10(24):20854-20861. doi: 10.1021/acsami.8b04889

    49. [49]

      Tu J P, Zeng X L, Xu F J, Wu X, Tian Y F, Hou X D, Long Z. Microwave-Induced Fast Incorporation of Titanium into UiO-66 Metal-Organic Frameworks for Enhanced Photocatalytic Properties[J]. Chem. Commun., 2017,53(23):3361-3364. doi: 10.1039/C7CC00076F

    50. [50]

      Smith S J, Ladewig B P, Hill A J, Lau C H, Hill M R. Postsynthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes[J]. Sci. Rep., 2015,57823. doi: 10.1038/srep07823

    51. [51]

      Lin Y X, Zhang Y, Li G J. Promotion of Sulfameter Degradation by Coupling Persulfate and Photocatalytic Advanced Oxidation Processes with Fe-Doped MOFs[J]. Sep. Purif. Technol., 2022,282119632. doi: 10.1016/j.seppur.2021.119632

    52. [52]

      Lee Y, Kim S, Kang J K, Cohen S M. Photocatalytic CO2 Reduction by a Mixed Metal (Zr/Ti), Mixed Ligand Metal-Organic Framework under Visible Light Irradiation[J]. Chem. Commun., 2015,51(26):5735-5738. doi: 10.1039/C5CC00686D

    53. [53]

      Tang J, Salunkhe R R, Liu J, Torad N L, Imura M, Furukawa S, Yamauchi Y. Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon[J]. J. Am. Chem. Soc., 2015,137(4):1572-1580. doi: 10.1021/ja511539a

    54. [54]

      Vermoortele F, Ameloot R, Alaerts L, Matthessen R, Carlier B, Fernandez E V R, Gascon J, Kapteijn F, De Vos D E. Tuning the Catalytic Performance of Metal-Organic Frameworks in Fine Chemistry by Active Site Engineering[J]. J. Mater. Chem., 2012,22(20):10313-10321. doi: 10.1039/c2jm16030g

    55. [55]

      Meng F, Zhang S, Ma L, Zhang W, Li M, Wu T, Li H, Zhang T, Lu X, Huo F, Lu J. Construction of Hierarchically Porous Nanoparticles@Metal-Organic Frameworks Composites by Inherent Defects for the Enhancement of Catalytic Efficiency[J]. Adv. Mater., 2018,30(49)e1803263. doi: 10.1002/adma.201803263

    56. [56]

      Xu R M, Ji Q H, Zhao P, Jian M P, Xiang C, Hu C Z, Zhang G, Tang C C, Liu R P, Zhang X W, Qu J H. Hierarchically Porous UiO-66 with Tunable Mesopores and Oxygen Vacancies for Enhanced Arsenic Removal[J]. J. Mater. Chem. A, 2020,8(16):7870-7879. doi: 10.1039/C9TA13747E

    57. [57]

      Karagiaridi O, Lalonde M B, Bury W, Sarjeant A A, Farha O K, Hupp J T. Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers[J]. J. Am. Chem. Soc., 2012,134(45):18790-18796. doi: 10.1021/ja308786r

    58. [58]

      Marshall R J, Forgan R S. Postsynthetic Modification of Zirconium Metal-Organic Frameworks[J]. Eur. J. Inorg. Chem., 2016,2016(27):4310-4331. doi: 10.1002/ejic.201600394

    59. [59]

      Li Y H, Wang C C, Zeng X, Sun X Z, Zhao C, Fu H F, Wang P. Seignette Salt Induced Defects in Zr-MOFs for Boosted Pb Adsorption: Universal Strategy and Mechanism Insight[J]. Chem. Eng. J., 2022,442136276. doi: 10.1016/j.cej.2022.136276

    60. [60]

      Shearer G C, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud K P. Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework UiO-66 via Modulated Synthesis[J]. Chem. Mater., 2016,28(11):3749-3761. doi: 10.1021/acs.chemmater.6b00602

    61. [61]

      Chang Y J, Huang H L, Yang T, Wang L, Zhu H J, Zhong C L. Simultaneous Introduction of Oxygen Vacancies and Hierarchical Pores into Titanium-Based Metal-Organic Framework for Enhanced Photocatalytic Performance[J]. J. Colloid Interface Sci., 2021,599:785-794. doi: 10.1016/j.jcis.2021.04.134

    62. [62]

      Gupta S K, Pathak N, Ghosh P S, Rajeshwari B, Natarajan V, Kadam R M. Temperature Dependent Electron Paramagnetic Resonance (EPR) of SrZrO3[J]. J. Magn. Magn. Mater., 2015,391:101-107. doi: 10.1016/j.jmmm.2015.04.108

    63. [63]

      Zhu L K, Zhang D L, Xue M, Li H, Qiu S L. Direct Observations of the MOF (UiO-66) Structure by Transmission Electron Microscopy[J]. CrystEngComm, 2013,15(45)9356. doi: 10.1039/c3ce41122b

    64. [64]

      Liu L M, Chen Z J, Wang J J, Zhang D L, Zhu Y H, Ling S L, Huang K W, Belmabkhout Y, Adil K, Zhang Y X, Slater B, Eddaoudi M, Han Y. Imaging Defects and Their Evolution in a Metal-Organic Framework at Sub-Unit-Cell Resolution[J]. Nat. Chem., 2019,11(7):622-628. doi: 10.1038/s41557-019-0263-4

    65. [65]

      Zhang Y C, Guerra-Nunez C, Utke I, Michler J, Agrawal P, Rossell M D, Erni R. Atomic Layer Deposition of Titanium Oxide on Single-Layer Graphene: An Atomic-Scale Study toward Understanding Nucleation and Growth[J]. Chem. Mater., 2017,29(5):2232-2238. doi: 10.1021/acs.chemmater.6b05143

    66. [66]

      Liu L, Qiao Z W, Cui X F, Pang C J, Liang H, Xie P, Luo X, Huang Z Q, Zhang Y J, Zhao Z X. Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides[J]. ACS Appl. Mater. Interfaces, 2019,11(26):23039-23049. doi: 10.1021/acsami.9b07453

    67. [67]

      Penner-Hahn J E. X-ray Absorption Spectroscopy in Coordination Chemistry[J]. Coord. Chem. Rev., 1999,90-192:1101-1123.

    68. [68]

      Xue Z Q, Liu K, Liu Q L, Li Y L, Li M R, Su C Y, Ogiwara N, Kobayashi H, Kitagawa H, Liu M, Li G Q. Missing-Linker Metal-Organic Frameworks for Oxygen Evolution Reaction[J]. Nat. Commun., 2019,10(1)5048. doi: 10.1038/s41467-019-13051-2

    69. [69]

      Vörösmarty C J, McIntyre P B, Gessner M O, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S E, Sullivan C A, Liermann C R, Davies P M. Global Threats to Human Water Security and River Biodiversity[J]. Nature, 2010,467(7315):555-561. doi: 10.1038/nature09440

    70. [70]

      Shen Y, Zhang Z H, Xiao K J. Evaluation of Cobalt Oxide, Copper Oxide and Their Solid Solutions as Heterogeneous Catalysts for Fenton-Degradation of Dye Pollutants[J]. RSC Adv., 2015,5(111):91846-91854. doi: 10.1039/C5RA18923C

    71. [71]

      Akram N, Guo J, Ma W L, Guo Y, Hassan A, Wang J D. Synergistic Catalysis of Co(OH)2/CuO for the Degradation of Organic Pollutant under Visible Light Irradiation[J]. Sci. Rep., 2020,10(1)1939. doi: 10.1038/s41598-020-59053-9

    72. [72]

      Conley D J, Paerl H W, Howarth R W, Boesch D F, Seitzinger S P, Havens K E, Lancelot C, Likens G E. Controlling Eutrophication: Nitrogen and Phosphorus[J]. Science, 2009,323(5917):1014-1015. doi: 10.1126/science.1167755

    73. [73]

      Lewis W M, Wurtsbaugh W A, Paerl H W. Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters[J]. Environ. Sci. Technol., 2011,45(24):10300-10305. doi: 10.1021/es202401p

    74. [74]

      Peng Y G, Huang H L, Zhang Y X, Kang C F, Chen S M, Song L, Liu D H, Zhong C L. A Versatile MOF-Based Trap for Heavy Metal Ion Capture and Dispersion[J]. Nat. Commun., 2018,9(1)187. doi: 10.1038/s41467-017-02600-2

    75. [75]

      Kumar A, Khan M, He J H, Lo I M C. Recent Developments and Challenges in Practical Application of Visible-Light-Driven TiO2-Based Heterojunctions for PPCP Degradation: A Critical Review[J]. Water Res., 2020,170115356. doi: 10.1016/j.watres.2019.115356

    76. [76]

      Zeng H J, Yu Z X, Shao L Y, Li X H, Zhu M, Liu Y C, Feng X F, Zhu X M. Ag2CO 3@UiO-66-NH2 Embedding Graphene Oxide Sheets Photocatalytic Membrane for Enhancing the Removal Performance of Cr(Ⅵ) and Dyes Based on Filtration[J]. Desalination, 2020,491114558. doi: 10.1016/j.desal.2020.114558

    77. [77]

      Chen H J, Wan J Q, Yan Z C, Ma Y G, Wang Y, Xie Y C, Hou J. Construction of Ultra-High Defective Iron-Based Metal Organic Frameworks with Small Molecule Acid Regulator for Enhanced Degradation of Sulfamethoxazole[J]. J. Clean. Prod., 2022,348131367. doi: 10.1016/j.jclepro.2022.131367

    78. [78]

      Sun J, Wan J Q, Wang Y, Yan Z C, Ma Y W, Ding S, Tang M, Xie Y C. Modulated Construction of Fe-Based MOF via Formic Acid Modulator for Enhanced Degradation of Sulfamethoxazole Design, Degradation Pathways, and Mechanism[J]. J. Hazard. Mater., 2022,429128299. doi: 10.1016/j.jhazmat.2022.128299

    79. [79]

      Yin L M, Wang D B, Li X P, He Y Y, Liu X Q, Xu Y Y, Chen H. One-Pot Synthesis of Oxygen-Vacancy-Rich Cu-Doped UiO-66 for Collaborative Adsorption and Photocatalytic Degradation of Ciprofloxacin[J]. Sci. Total Environ., 2022,815151962. doi: 10.1016/j.scitotenv.2021.151962

    80. [80]

      Feng Y, Chen Q, Cao M J, Ling N, Yao J F. Defect-Tailoring and Titanium Substitution in Metal-Organic Framework UiO-66-NH2 for the Photocatalytic Degradation of Cr(Ⅵ) to Cr(Ⅲ)[J]. ACS Appl. Nano Mater., 2019,2(9):5973-5980. doi: 10.1021/acsanm.9b01403

    81. [81]

      Fan K, Nie W X, Wang L P, Liao C H, Bao S S, Zheng L M. Defective Metal-Organic Frameworks Incorporating Iridium-Based Metal loligands: Sorption and Dye Degradation Properties[J]. Chemistry, 2017,23(27):6615-6624. doi: 10.1002/chem.201700365

    82. [82]

      Gao Y X, Xia J, Liu D C, Kang R X, Yu G, Deng S B. Synthesis of Mixed-Linker Zr-MOFs for Emerging Contaminant Adsorption and Photodegradation under Visible Light[J]. Chem. Eng. J., 2019,378122118. doi: 10.1016/j.cej.2019.122118

    83. [83]

      He J J, Xu Y H, Xiong Z K, Lai B, Sun Y, Yang Y, Yang L W. The Enhanced Removal of Phosphate by Structural Defects and Competitive Fluoride Adsorption on Cerium-Based Adsorbent[J]. Chemosphere, 2020,256127056. doi: 10.1016/j.chemosphere.2020.127056

    84. [84]

      Li B, Zhu X Y, Hu K L, Li Y S, Feng J F, Shi J L, Gu J L. Defect Creation in Metal-Organic Frameworks for Rapid and Controllable Decontamination of Roxarsone from Aqueous Solution[J]. J. Hazard. Mater., 2016,302:57-64. doi: 10.1016/j.jhazmat.2015.09.040

    85. [85]

      Ali S, Zuhra Z, Abbas Y, Shu Y F, Ahmad M, Wang Z Y. Tailoring Defect Density in UiO-66 Frameworks for Enhanced Pb Adsorption[J]. Langmuir, 2021,37(46):13602-13609. doi: 10.1021/acs.langmuir.1c02032

    86. [86]

      Clark C A, Heck K N, Powell C D, Wong M S. Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate[J]. ACS Sustain. Chem. Eng., 2019,7(7):6619-6628. doi: 10.1021/acssuschemeng.8b05572

    87. [87]

      Cai G R, Ma X, Kassymova M, Sun K, Ding M L, Jiang H L. Large-Scale Production of Hierarchically Porous Metal-Organic Frameworks by a Reflux-Assisted Post-synthetic Ligand Substitution Strategy[J]. ACS Cent. Sci., 2021,7(8):1434-1440. doi: 10.1021/acscentsci.1c00743

    88. [88]

      Xu Y Y, Lv J X, Song Y, Zhou X Y, Tian C, Hong X J, Cai Y P, Zhao C Y, Lin Z. Efficient Removal of Low-Concentration Organoarsenic by Zr-Based Metal-Organic Frameworks: Cooperation of Defects and Hydrogen Bonds[J]. Environ. Sci. Nano, 2019,6(12):3590-3600. doi: 10.1039/C9EN00923J

    89. [89]

      Zhuang S T, Wang J L. Adsorptive Removal of Pharmaceutical Pollutants by Defective Metal Organic Framework UiO-66: Insight into the Contribution of Defects[J]. Chemosphere, 2021,281130997. doi: 10.1016/j.chemosphere.2021.130997

    90. [90]

      Prabhu S M, Chuaicham C, Park C M, Jeon B H, Sasaki K. Synthesis and Characterization of Defective UiO-66 for Efficient Co-immobilization of Arsenate and Fluoride from Single/Binary Solutions[J]. Environ. Pollut., 2021,278116841. doi: 10.1016/j.envpol.2021.116841

    91. [91]

      Peng M M, You D, Shi H, Shao P H, Ren W, Yang L M, Sheng X, Shao J C, Ding X, Ding L, Wang H Z, Yu K, Luo X B. Disclosing the Role of Defective UiO-66 over Sb Removal: A Joint Experimental and Theoretical Study[J]. Chem. Eng. J., 2022,448137612. doi: 10.1016/j.cej.2022.137612

    92. [92]

      Qin M H, Shi Y M, Lu D K, Deng J J, Shi G Y, Zhou T S. High-Performance Hf/Ti-Doped Defective Zr-MOFs for Cefoperazone Adsorption: Behavior and Mechanisms[J]. Appl. Surf. Sci., 2022,595153494. doi: 10.1016/j.apsusc.2022.153494

    93. [93]

      Pei L, Zhao X D, Liu B S, Li Z J, Wei Y H. Rationally Tailoring Pore and Surface Properties of Metal-Organic Frameworks for Boosting Adsorption of Dy3+[J]. ACS Appl. Mater. Interfaces, 2021,13(39):46763-46771. doi: 10.1021/acsami.1c14302

    94. [94]

      Fang F, Lv Q K, Li P, Tao Y, Zhang Y, Zhou Y, Li X D, Li J. Screening of Hierarchical Porous UiO-67 for Efficient Removal of Glyphosate from Aqueous Solution[J]. J. Environ. Chem. Eng., 2022,10(3)107824. doi: 10.1016/j.jece.2022.107824

    95. [95]

      Liu B Y, Liu M X, Xie Z Y, Li Y R, Zhang A B. Performance of Defective Zr-MOFs for the Adsorption of Anionic Dyes[J]. J. Mater. Sci., 2022,57(9):5438-5455. doi: 10.1007/s10853-022-06874-w

    96. [96]

      Zhang H C, Huang C, Zhang Z H, Xiang L, Yue S R, Shen Z Z, Li J. Structure Engineering of Zn-ZIF Adsorbents for Efficient and Highly-Selective Phosphate Removal from Wastewater: Roles of Surface Mesopore and Defect[J]. Appl. Surf. Sci., 2022,586152814. doi: 10.1016/j.apsusc.2022.152814

    97. [97]

      Wang C C, Wang X, Liu W. The Synthesis Strategies and Photocatalytic Performances of TiO2/MOFs Composites: A State-Of-The-Art Review[J]. Chem. Eng. J., 2020,391123601. doi: 10.1016/j.cej.2019.123601

    98. [98]

      Wang C C, Yi X Y, Wang P. Powerful Combination of MOFs and C3N4 for Enhanced Photocatalytic Performance[J]. Appl. Catal. B-Environ., 2019,247:24-48. doi: 10.1016/j.apcatb.2019.01.091

    99. [99]

      Yi X H, Ma S Q, Du X D, Zhao C, Fu H F, Wang P, Wang C C. The Facile Fabrication of 2D/3D Z-Scheme g-C3N4/UiO-66 Heterojunction with Enhanced Photocatalytic Cr(Ⅵ) Reduction Performance under White Light[J]. Chem. Eng. J., 2019,375121944. doi: 10.1016/j.cej.2019.121944

    100. [100]

      Yasin A S, Li J T, Wu N Q, Musho T. Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework[J]. Phys. Chem. Chem. Phys., 2016,18(18):12748-12754. doi: 10.1039/C5CP08070C

    101. [101]

      Wang A N, Zhou Y J, Wang Z L, Chen M, Sun L Y, Liu X. Titanium Incorporated with UiO-66(Zr)-Type Metal-Organic Framework (MOF) for Photocatalytic Application[J]. RSC Adv., 2016,6(5):3671-3679. doi: 10.1039/C5RA24135A

    102. [102]

      Zhao C, Wang J S, Chen X, Wang Z H, Ji H D, Chen L, Liu W, Wang C C. Bifunctional Bi12O17Cl2/MIL-100(Fe) Composites toward Photocatalytic Cr(Ⅵ) Sequestration and Activation of Persulfate for Bisphenol A Degradation[J]. Sci. Total Environ., 2021,752141901. doi: 10.1016/j.scitotenv.2020.141901

    103. [103]

      Yi X H, Ji H D, Wang C C, Li Y, Li Y H, Zhao C, Wang A, Fu H F, Wang P, Zhao X, Liu W. Photocatalysis-Activated SR-AOP over PDINH/MIL-88A(Fe) Composites for Boosted Chloroquine Phosphate Degradation: Performance, Mechanism, Pathway and DFT Calculations[J]. Appl. Catal. B-Environ., 2021,293120229. doi: 10.1016/j.apcatb.2021.120229

    104. [104]

      Thorarinsdottir A E, Harris T D. Metal-Organic Framework Magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    105. [105]

      Kirchon A, Feng L, Drake H F, Joseph E A, Zhou H C. From Fundamentals to Applications: A Toolbox for Robust and Multifunctional MOF Materials[J]. Chem. Soc. Rev., 2018,47(23):8611-8638. doi: 10.1039/C8CS00688A

    106. [106]

      Hassan M H, Stanton R, Secora J, Trivedi D J, Andreescu S. Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal-Organic Framework[J]. ACS Appl. Mater. Interfaces, 2020,12(47):52788-52796. doi: 10.1021/acsami.0c16477

    107. [107]

      Cirujano F G, Martin N, Wee L H. Design of Hierarchical Architectures in Metal-Organic Frameworks for Catalysis and Adsorption[J]. Chem. Mater., 2020,32(24):10268-10295. doi: 10.1021/acs.chemmater.0c02973

    108. [108]

      Feng L, Day G S, Wang K Y, Yuan S, Zhou H C. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks[J]. Chem, 2020,6(11):2902-2923. doi: 10.1016/j.chempr.2020.09.010

    109. [109]

      Yuan S, Zou L F, Qin J S, Li J L, Huang L, Feng L, Wang X, Bosch M, Alsalme A, Cagin T, Zhou H C. Construction of Hierarchically Porous Metal-Organic Frameworks through Linker Labilization[J]. Nat. Commun., 2017,815356. doi: 10.1038/ncomms15356

    110. [110]

      WANG F W, WANG C C, WANG P, XING B C. Synthesis and Applications of UiO Series MOFs[J]. Chinese J. Inorg. Chem., 2017,33(5):713-737.  

    111. [111]

      Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability[J]. J. Am. Chem. Soc., 2008,130(42):13850-13851. doi: 10.1021/ja8057953

    112. [112]

      Ashley K, Cordell D, Mavinic D. A Brief History of Phosphorus: From the Philosopher's Stone to Nutrient Recovery and Reuse[J]. Chemosphere, 2011,84(6):737-46. doi: 10.1016/j.chemosphere.2011.03.001

    113. [113]

      CHEN D D, YI X H, WANG C C. Preparation of Metal-Organic Frameworks and Their Composites Using Mechanochemical Methods[J]. Chinese J. Inorg. Chem., 2020,36(10):1805-1821. doi: 10.11862/CJIC.2020.212

    114. [114]

      Wei X, Wang C C, Li Y, Wang P, Wei Q. The Z-Scheme NH2-UiO-66/PTCDA Composite for Enhanced Photocatalytic Cr(Ⅵ) Reduction under Low-Power Led Visible Light[J]. Chemosphere, 2021,280130734. doi: 10.1016/j.chemosphere.2021.130734

    115. [115]

      Zhang X W, Wang F, Wang C C, Wang P, Fu H F, Zhao C. Photocatalysis Activation of Peroxodisulfate over the Supported Fe3O4 Catalyst Derived from MIL-88A(Fe) for Efficient Tetracycline Hydrochloride Degradation[J]. Chem. Eng. J., 2021,426131927. doi: 10.1016/j.cej.2021.131927

    116. [116]

      Roy S, Huang Z H, Bhunia A, Castner A, Gupta A K, Zou X D, Ott S. Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal-Organic Framework Thin Film[J]. J. Am. Chem. Soc., 2019,141(40):15942-15950. doi: 10.1021/jacs.9b07084

    117. [117]

      Ge M, Wang Y Z, Carraro F, Liang W B, Roostaeinia M, Siahrostami S, Proserpio D M, Doonan C, Falcaro P, Zheng H Q, Zou X D, Huang Z H. High-Throughput Electron Diffraction Reveals a Hidden Novel Metal-Organic Framework for Electrocatalysis[J]. Angew. Chem. Int. Ed., 2021,60(20):11391-11397. doi: 10.1002/anie.202016882

    118. [118]

      Qi J J, Yang X Y, Pan P Y, Huang T B, Yang X D, Wang C C, Liu W. Interface Engineering of Co(OH)2 Nanosheets Growing on the KNbO3 Perovskite Based on Electronic Structure Modulation for Enhanced Peroxymonosulfate Activation[J]. Environ. Sci. Technol., 2022,56(8):5200-5212. doi: 10.1021/acs.est.1c08806

    119. [119]

      Qiu X C, Liu L, Xu W, Chen C, Li M, Shi Y H, Wu X Y, Chen K, Wang C C. Zeolitic Imidazolate Framework-8 Nanoparticles Exhibit More Severe Toxicity to the Embryo/Larvae of Zebrafish (Danio rerio) when Co-exposed with Cetylpyridinium Chloride[J]. Antioxidants, 2022,11(5)945. doi: 10.3390/antiox11050945

    120. [120]

      Shi Y H, Rong X S, Chen C, Wu M, Takai Y, Qiu X C, Wang C C, Yohei S, Yuji O. Effects of ZIF-8 Nanoparticles on the Survival, Development, and Locomotor Activity of Early-Life-Stages of Zebrafish (Danio rerio)[J]. J. Fac. Agric. Kyushu Univ., 2021,66(2):211-216.

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

Metrics
  • PDF Downloads(81)
  • Abstract views(1568)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return