Citation: He-Nan DONG, Yang-Yang GE, Xin-Ying WEI, De-Pei LIU, Yuan-Dong YAN, Shi-Cheng YAN. Electrodepositing Dense Sn/SnBi Alloy on Carbon Cloth for Electrocatalytic CO2 Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2433-2442. doi: 10.11862/CJIC.2022.250 shu

Electrodepositing Dense Sn/SnBi Alloy on Carbon Cloth for Electrocatalytic CO2 Reduction

  • Corresponding author: Shi-Cheng YAN, yscfei@nju.edu.cn
  • Received Date: 15 June 2022
    Revised Date: 12 October 2022

Figures(7)

  • SnBi alloy was prepared by the two-step electrodeposition method. Sn was first electrodeposited on the carbon cloth (CC). Since the electrolyte used in the second step was acidic, Sn was dissolved in the electrolyte to form a small amount of Sn2+. As a result, SnBi alloy dendrites formed by doping a small amount of Sn with Bi. Subsequently, SnBi alloy dendrites were transformed into SnBi alloy nanoparticles (NPs) by in-situ chemical oxidation and electrochemical reduction. Thanks to the nucleation sites provided by Sn, SnBi dendrites grow densely and uniformly on the CC, providing a high-quality precursor and finally achieving SnBi nanoparticles with a diameter of about 20 nm through two-step transformation. CC/Sn/SnBi NPs electrode exhibited 94.9% formate selectivity and current density up to 36 mA·cm-2 at -1.08 V (vs RHE), showing high activity of electrocatalytic reduction of CO2 with the continuous 12 h stability.
  • 加载中
    1. [1]

      Snow N. BP Energy Outlook: Global Energy Demand to Grow 30% to 2035[J]. Oil Gas J., 2017,115:30-31.

    2. [2]

      Xu S Z, Carter E A. Theoretical Insights into Heterogeneous (Photo) electrochemical CO2 Reduction[J]. Chem. Rev., 2019,119:6631-6669. doi: 10.1021/acs.chemrev.8b00481

    3. [3]

      Lin R, Guo J X, Li X J, Patel P, Seifitokaldani A. Electrochemical Reactors for CO2 Conversion[J]. Catalysts, 2020,10473. doi: 10.3390/catal10050473

    4. [4]

      Kondratenko E V, Mul G, Baltrusaitis J, Larrazabal G O, Perez-Ramirez J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes[J]. Energy Environ. Sci., 2013,6:3112-3135. doi: 10.1039/c3ee41272e

    5. [5]

      Zhang W J, Hu Y, Ma L B, Zhu G Y, Wang Y R, Xue X L, Chen R P, Yang S Y, Jin Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals[J]. Adv. Sci., 2018,51700275. doi: 10.1002/advs.201700275

    6. [6]

      Proietto F, Patel U, Galia A, Scialdone O. Electrochemical Conversion of CO 2 to Formic Acid Using a Sn Based Electrode: A Critical Review on the State-of-the-Art Technologies and Their Potential[J]. Electrochim. Acta, 2021,389138753. doi: 10.1016/j.electacta.2021.138753

    7. [7]

      Agarwal A S, Zhai Y M, Hill D, Sridhar N. The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility[J]. ChemSusChem, 2011,4:1301-1310. doi: 10.1002/cssc.201100220

    8. [8]

      Scialdone O, Galia A, Nero G L, Proietto F, Sabatino S, Schiavo B. Electrochemical Reduction of Carbon Dioxide to Formic Acid at a Tin Cathode in Divided and Undivided Cells: Effect of Carbon Dioxide Pressure and Other Operating Parameters[J]. Electrochim. Acta, 2016,199:332-341. doi: 10.1016/j.electacta.2016.02.079

    9. [9]

      Du D W, Lan R, Humphreys J, Tao S W. Progress in Inorganic Cathode Catalysts for Electrochemical Conversion of Carbon Dioxide into Formate or Formic Acid[J]. J. Appl. Electrochem., 2017,47:661-678. doi: 10.1007/s10800-017-1078-x

    10. [10]

      Han N, Ding P, He L, Li Y Y, Li Y G. Promises of Main Group Metal-Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate[J]. Adv. Energy Mater., 2019,101902338.

    11. [11]

      Zhu D D, Liu J L, Qiao S Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide[J]. Adv. Mater., 2016,28:3423-3452. doi: 10.1002/adma.201504766

    12. [12]

      Huang J, Guo X, Huang X, Wang L. Metal (Sn, Bi, Pb, Cd) In-Situ Anchored on Mesoporous Hollow Kapok-Tubes for Outstanding Electrocatalytic CO2 Reduction to Formate[J]. Electrochim. Acta, 2019,325134923. doi: 10.1016/j.electacta.2019.134923

    13. [13]

      Castillo A D, Alvarez-Guerra M, Solla-Gullón J, Sáez A, Montiel V, Irabien A. Sn Nanoparticles on Gas Diffusion Electrodes: Synthesis, Characterization and Use for Continuous CO2 Electroreduction to Formate[J]. ACS Appl. Energy Mater., 2017,18:222-228.

    14. [14]

      Zhang X L, Sun X H, Guo S X, Bond A M, Zhang J. Formation of Lattice-Dislocated Bismuth Nanowires on Copper Foam for Enhanced Electrocatalytic CO2 Reduction at Low Overpotential[J]. Energy Environ. Sci., 2019,12:1334-1340. doi: 10.1039/C9EE00018F

    15. [15]

      Xie H, Zhang T, Xie R K, Hou Z F, Ji X C, Pang Y Y, Chen S Q, Titirici M M, Weng H M, Chai G L. Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO2 Reduction[J]. Adv. Mater., 2021,332008373. doi: 10.1002/adma.202008373

    16. [16]

      Kim S, Dong W J, Gim S, Sohn W, Park J Y, Yoo C J, Jang H W, Lee J L. Shape-Controlled Bismuth Nanoflakes as Highly Selective Catalysts for Electrochemical Carbon Dioxide Reduction to Formate[J]. Nano Energy, 2017,39:44-52. doi: 10.1016/j.nanoen.2017.05.065

    17. [17]

      Zhang F H, Chen C Z, Yan S L, Zhong J H, Zhang B, Cheng Z M. Cu@Bi Nanocone Induced Efficient Reduction of CO2 to Formate with High Current Density[J]. Appl. Catal. A-Gen., 2020,598117545. doi: 10.1016/j.apcata.2020.117545

    18. [18]

      Li F, Gu G H, Choi C, Kolla P, Hong S, Wu T S, Soo Y L, Masa J, Mukerjee S, Jung Y, Qiu J S, Sun Z Y. Highly Stable Two-Dimensional Bismuth Metal-Organic Frameworks for Efficient Electrochemical Reduction of CO2[J]. Appl. Catal. B-Environ., 2020,277119241. doi: 10.1016/j.apcatb.2020.119241

    19. [19]

      Ren B H, Wen G B, Gao R, Luo D, Zhang Z, Qiu W B, Ma Q Y, Wang X, Cui Y, Ricardez L, Yu A P, Chen Z W. Nano-crumples Induced Sn-Bi Bimetallic Interface Pattern with Moderate Electron Bank for Highly Efficient CO2 Electroreduction[J]. Nat. Commun., 2022,132486. doi: 10.1038/s41467-022-29861-w

    20. [20]

      Wen G, Lee D U, Ren B, Hassan F M, Jiang G, Cano Z P, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction toward Formate Production[J]. Adv. Energy Mater., 2018,818024.

    21. [21]

      Li Q Q, Zhang Y X, Zhang X R, Wang H Q, Li Q Y, Sheng J W, Yi J, Liu Y Y, Zhang J J. Novel Bi, BiSn, Bi2Sn, Bi 3Sn, and Bi4Sn Catalysts for Efficient Electroreduction of CO2 to Formic Acid[J]. Ind. Eng. Chem. Res., 2020,59:6806-6814. doi: 10.1021/acs.iecr.9b03017

    22. [22]

      Wu Z X, Wu H B, Cai W Q, Wen Z H, Jia B H, Wang L, Jin W, Ma T Y. Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO2 Reduction to HCOOH[J]. Angew. Chem. Int. Ed., 2021,60:12554-12559. doi: 10.1002/anie.202102832

    23. [23]

      Li Z, Feng Y J, Li Y F, Chen X P, Li N, He W H, Liu J. Fabrication of Bi/Sn Bimetallic Electrode for High-Performance Electrochemical Reduction of Carbon Dioxide to Formate[J]. Chem. Eng. J., 2022,428130901. doi: 10.1016/j.cej.2021.130901

    24. [24]

      Wu D, Wang X W, Fu X Z, Luo J L. Ultrasmall Bi Nanoparticles Confined in Carbon Nanosheets as Highly Active and Durable Catalysts for CO2 Electroreduction[J]. Appl. Catal. B-Environ., 2021,284119723. doi: 10.1016/j.apcatb.2020.119723

    25. [25]

      Zhao M M, Gu Y L, Gao W C, Cui P X, Tang H, Wei X Y, Zhu H, Li G Q, Yan S C, Zhang X Y, Zou Z G. Atom Vacancies Induced Electron-Rich Surface of Ultrathin Bi Nanosheet for Efficient Electrochemical CO2 Reduction[J]. Appl. Catal. B-Environ., 2020,266118625. doi: 10.1016/j.apcatb.2020.118625

    26. [26]

      Wei X Y, Zhang W N, Liu D P, Liu D D, Yan Y D, Zhang J, Yang Y D, Yan S C, Zou Z G. Bi Particles with Exposed (012) Facet on 3D Substrate as Highly Active and Durable Electrode for CO2 Reduction to Formate[J]. J. CO2 Util., 2022,55101797. doi: 10.1016/j.jcou.2021.101797

    27. [27]

      Wen G, Lee D U, Ren B, Hassan F M, Jiang G, Cano Z P, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction toward Formate Production[J]. Adv. Energy Mater., 2018,81802427. doi: 10.1002/aenm.201802427

    28. [28]

      Zhao Y, Liu X L, Liu Z X, Lin X, Lan J, Zhang Y L, Lu Y R, Peng M, Chan T S, Tan Y W. Spontaneously Sn-Doped Bi/BiOx Core-Shell Nanowires toward High-Performance CO2 Electroreduction to Liquid Fuel[J]. Nano Lett., 2021,21:6907-6913. doi: 10.1021/acs.nanolett.1c02053

    29. [29]

      An X W, Li S S, Yoshida A, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. Bi-Doped SnO Nanosheets Supported on Cu Foam for Electrochemical Reduction of CO2 to HCOOH[J]. ACS Appl. Mater. Interfaces, 2019,11:42114-42122. doi: 10.1021/acsami.9b13270

    30. [30]

      Koh J, Won D, Eom T, Kim N, Jung K, Kim H, Hwang Y, Min B. Facile CO2 Electro-reduction to Formate via Oxygen Bidentate Intermediate Stabilized by High-Index Planes of Bi Dendrite Catalyst[J]. ACS Catal., 2017,7:5071-5077. doi: 10.1021/acscatal.7b00707

    31. [31]

      Clementi E, Raimondi D L, Reinhardt W P. Atomic Screening Constants from SCF Functions Atom with 37 to 86 Electrons[J]. J. Chem. Phys., 1967,47:1300-1307. doi: 10.1063/1.1712084

    32. [32]

      Reifsnyder S N, Otten M M, Sayers D E, Lamb H H. Hydrogen Chemisorption on Silica-Supported Pt Clusters: In Situ X-ray Absorption Spectroscopy[J]. J. Phys. Chem. B, 1997,101:4972-4977. doi: 10.1021/jp970244e

    33. [33]

      Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Road-Map to Achieve the Best Performance[J]. J. Am. Chem. Soc., 2014,136:4394-4403. doi: 10.1021/ja500432h

    34. [34]

      Yan Y D, Yan S C, Yu Z T, Zou Z G. Low-Work-Function Silver Activating N-Doped Graphene as Efficient Oxygen Reduction Catalysts in Acidic Medium[J]. ChemCatChem, 2019,11:1033-1038.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

Metrics
  • PDF Downloads(9)
  • Abstract views(542)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return