Citation: Ming-Hao HUANG, Zhuo LI, Lei-Lei DU, Zhi-Kang JIN, Ren-Hong LI. CuPd/MgO for Efficient Catalytic Hydrogen Production from Formaldehyde Solution at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2452-2458. doi: 10.11862/CJIC.2022.247 shu

CuPd/MgO for Efficient Catalytic Hydrogen Production from Formaldehyde Solution at Room Temperature

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 29 June 2022
    Revised Date: 9 October 2022

Figures(5)

  • The composite catalyst of CuPd alloy nanoparticles supported on MgO (CuPd/MgO) was prepared by an impregnation reduction method. CuPd/MgO showed excellent catalytic performance during formaldehyde reforming for hydrogen production at room temperature in the air. The turnover frequency (TOF) of CuPd/MgO was as high as 812.6 h-1, which was respectively 2.3 times and 23 times higher than that of Cu/MgO (TOF=356.7 h-1) and Pd/MgO (TOF=34.8 h-1) under the same reaction conditions. Based on the experimental observations and characterization results, we found that a strong metal support interaction (SMSI) between CuPd alloy nanoparticles and MgO support enriched with defects on the surface was present in CuPd/MgO. This interaction was conducive to the transfer and recombination of electrons on the catalyst, greatly promoting the adsorption, activation, and reduction of oxygen on the catalyst surface to form superoxide anion radical (·O2-). The ·O2- combined with the proton generated by the C—H bond breaking of formaldehyde to form superoxide radical (·OOH). The hydrogen radical (·H) dissociated from water molecules in the reaction system continuously combined with ·OOH to generate hydrogen and oxygen, leading to the generation of hydrogen and the regeneration of oxygen.
  • 加载中
    1. [1]

      Feng J X, Wu J Q, Tong Y X, Li G R. Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption[J]. J. Am. Chem. Soc., 2018,140:610-617. doi: 10.1021/jacs.7b08521

    2. [2]

      Turner J A. A Realizable Renewable Energy Future[J]. Science, 1999,285:687-689. doi: 10.1126/science.285.5428.687

    3. [3]

      Chaubey R, Sahu S, James O O, Maity S. A Review on Development of Industrial Processes and Emerging Techniques for Production of Hydrogen from Renewable and Sustainable Sources[J]. Renew. Sust. Energ. Rev., 2013,23:443-462. doi: 10.1016/j.rser.2013.02.019

    4. [4]

      Brentner L B, Peccia J, Zimmerman J B. Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda[J]. Environ. Sci. Technol., 2010,44:2243-2254. doi: 10.1021/es9030613

    5. [5]

      Wang C L, Astruc D. Recent Developments of Nanocatalyzed Liquid-Phase Hydrogen Generation[J]. Chem. Soc. Rev., 2021,50:3437-3484. doi: 10.1039/D0CS00515K

    6. [6]

      Trincado M, Sinha V, Rodriguez-Lugo R E, Pribanic B, De Bruin B, Grützmacher H. Homogeneously Catalysed Conversion of Aqueous Formaldehyde to H2 and Carbonate[J]. Nat. Commun., 2017,814990. doi: 10.1038/ncomms14990

    7. [7]

      Bi Y P, Lu G X. Morphology-Controlled Preparation of Silver Nanocrystals and Their Application in Catalysis[J]. Chem. Lett., 2008,37:514-515. doi: 10.1246/cl.2008.514

    8. [8]

      Bi Y P, Lu G X. Iodide Ions Control Galvanic Replacement Growth of Uniform Rhodium Nanotubes at Room Temperature[J]. Chem. Commun., 2008,47:6402-6404.

    9. [9]

      LI S P. Pd Catalyst Formaldehyde to Produce Hydrogen at Room Temperature. Lanzhou: Lanzhou University of Technology, 2016: 26-27

    10. [10]

      Du X R, Tang H L, Qiao B T. Oxidative Strong Metal-Support Interactions[J]. Catalysts, 2021,11896. doi: 10.3390/catal11080896

    11. [11]

      Li R H, Liu Z Q, Trinh Q T, Miao Z Q, Chen S, Qian K C, Wong R J, Xi S B, Yan Y, Borgna A, Liang S P, Wei T, Dai Y H, Wang P, Tang Y, Yan X Q, Choksi S T, Liu W. Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and Their Enhanced Catalytic Performance for Formic Acid Dehydrogenation[J]. Adv. Mater., 2021,332101536. doi: 10.1002/adma.202101536

    12. [12]

      Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. Strong Metal-Support Interactions Between Gold Nanoparticles and ZnO Nanorods in CO Oxidation[J]. J. Am. Chem. Soc., 2012,134:10251-10258. doi: 10.1021/ja3033235

    13. [13]

      Tauster S J, Fung S C, Baker R T K, Horsley J A. Strong-Interactions in Supported-Metal Catalysts[J]. Science, 1981,211:1121-1125. doi: 10.1126/science.211.4487.1121

    14. [14]

      Belton D N, Sun Y M, White J M. Encapsulation and Electronic Effects in a Thin-Film Model of a Rhodium-Titania Catalyst[J]. J. Am. Chem. Soc., 1984,106:3059-3060. doi: 10.1021/ja00322a066

    15. [15]

      Li R H, Zhu X H, Yan X Q, Kobayashi H, Yoshida S, Chen W X, Du L L, Qian K C, Wu B L, Zou S H, Lu L F, Yi W Z, Zhou Y H, Fan J. Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst[J]. ACS Catal., 2017,7:1478-1484. doi: 10.1021/acscatal.6b03370

    16. [16]

      Wang H, Wang L, Lin D, Feng X, Niu Y M, Zhang B S, Xiao F S. Strong Metal-Support Interactions on Gold Nanoparticle Catalysts Achieved through Le Chatelier's Principle[J]. Nat. Catal., 2021,4:418-424. doi: 10.1038/s41929-021-00611-3

    17. [17]

      Chen D, Sun P C, Liu H, Yang J. Bimetallic Cu-Pd Alloy Multipods and Their Highly Electrocatalytic Performance for Formic Acid Oxidation and Oxygen Reduction[J]. J. Mater. Chem. A, 2017,5:4421-4429. doi: 10.1039/C6TA10476B

    18. [18]

      Li R H, Zhu X H, Du L L, Qian K C, Wu B L, Kawabata S, Kobayashi H, Yan X Q, Chen W X. All-Solid-State Magnesium Oxide Supported Group Ⅷ and ⅠB Metal Catalysts for Selective Catalytic Reforming of Aqueous Aldehydes into Hydrogen[J]. Int. J. Hydrog. Energy, 2017,42:10834-10843. doi: 10.1016/j.ijhydene.2017.02.041

    19. [19]

      Chen S, Liang S P, Wu B L, Lan Z H, Guo Z W, Kobayashi H, Yan X Q, Li R H. Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming[J]. ACS Appl. Mater. Interfaces, 2019,11:33946-33954. doi: 10.1021/acsami.9b11023

    20. [20]

      Qian K C, Du L L, Zhu X H, Laing S P, Chen S, Kobayashi H, Yan X Q, Xu M, Dai Y H, Li R H. Directional Oxygen Activation by Oxygen-Vacancy Rich WO2 Nanorods for Superb Hydrogen Evolution via Formaldehyde Reforming[J]. J. Mater. Chem. A, 2019,7:14592-14601. doi: 10.1039/C9TA03051D

    21. [21]

      Liang S P, Chen S, Guo Z W, Lan Z H, Kobayashi H, Yan X Q, Li R H. In Situ Generated Electron-Deficient Metallic Copper as the Catalytically Active Site for Enhanced Hydrogen Production from Alkaline Formaldehyde Solution[J]. Catal. Sci. Technol., 2019,9:5292-5300. doi: 10.1039/C9CY01136F

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Yu Li Lanlan Song Hongxiu Zhang . Exploring the Innovation in Teaching Principles of Chemical Engineering: Emphasizing Foundational Knowledge and Practical Skills. University Chemistry, 2024, 39(8): 91-98. doi: 10.3866/PKU.DXHX202312087

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(9)
  • Abstract views(585)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return