Diiron Butane-1, 2-dithiolate Complexes with Phosphine Ligands: Preparation, Crystal Structures, and Electrochemical Catalytic Performance
- Corresponding author: Xu-Feng LIU, nkxfliu@126.com
Citation: Xu-Feng LIU, Bo XU, Hang XU, Yu-Long LI. Diiron Butane-1, 2-dithiolate Complexes with Phosphine Ligands: Preparation, Crystal Structures, and Electrochemical Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2521-2529. doi: 10.11862/CJIC.2022.245
Cammack R. Hydrogenase Sophistication[J]. Nature, 1999,397(6716):214-215. doi: 10.1038/16601
Frey M. Hydrogenases: Hydrogen-Activating Enzymes[J]. ChemBioChem, 2002,3(2/3):153-160.
Darensbourg M Y, Lyon E J, Smee J J. The Bio-organometallic Chemistry of Active Site Iron in Hydrogenases[J]. Coord. Chem. Rev., 2000,206-207:533-561. doi: 10.1016/S0010-8545(00)00268-X
Evans D J, Pickett C J. Chemistry and the Hydrogenases[J]. Chem. Soc. Rev., 2003,32(5):268-275. doi: 10.1039/b201317g
Tard C, Pickett C J. Structural and Functional Analogs of the Active Sites of the[Fe]-, [NiFe]-, and[FeFe]-Hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q
Schilter D, Camara J M, Huynh M T, Hammes-Schiffer S, Rauchfuss T B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides[J]. Chem. Rev., 2016,116(15):8693-9749. doi: 10.1021/acs.chemrev.6b00180
Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution[J]. Science, 1998,282(5395):1853-1858. doi: 10.1126/science.282.5395.1853
Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Desulfovibrio Desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center[J]. Structure, 1999,7(1):13-23. doi: 10.1016/S0969-2126(99)80005-7
Fan H J, Hall M B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen[J]. J. Am. Chem. Soc., 2001,123(16):3828-3829. doi: 10.1021/ja004120i
Lyon E J, Georgakaki I P, Reibenspies J H, Darensbourg M Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase[J]. Angew. Chem. Int. Ed., 1999,38(21):3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
Lawrence J D, Li H, Rauchfuss T B, Bénard M, Rohmer M M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics[J]. Angew. Chem. Int. Ed., 2001,40(9):1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
Song L C, Yang Z Y, Bian H Z, Hu Q M. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of[Fe]-Only Hydrogenases[J]. Organometallics, 2004,23(13):3082-3084. doi: 10.1021/om049752i
Le Cloirec A, Best S P, Borg S, Davies S C, Evans D J, Hughes D L, Pickett C J. A Di-iron Dithiolate Possessing Structural Elements of the Carbonyl/Cyanide Sub-site of the H-Centre of Fe-Only Hydrogenase[J]. Chem. Commun., 1999:2285-2286.
Mejia-Rodriguez R, Chong D, Reibenspies J H, Soriaga M P, Darensbourg M Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes[J]. J. Am. Chem. Soc., 2004,126(38):12004-12014. doi: 10.1021/ja039394v
Capon J F, Hassnaoui S E, Gloaguen F, Schollhammer P, Talarmin J. N-Heterocyclic Carbene Ligands as Cyanide Mimics in Diiron Models of the All-Iron Hydrogenase Active Site[J]. Organometallics, 2005,24(9):2020-2022. doi: 10.1021/om049132h
Ghosh S, Hogarth G, Hollingsworth N, Holt K B, Richard I, Richmond M G, Sanchez B E, Unwin D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as Proton-Reduction Catalysts[J]. Dalton Trans., 2013,42(19):6775-6792. doi: 10.1039/c3dt50147g
Li A, Yang J, Lü S, Gui M S, Yan P, Gao F, Du L B, Yang Q, Li Y L. Synthesis, Characterization and Electrochemical Properties of Diiron Azadithiolate Complexes Fe2[(μ-SCH2)2NCH2CCH](CO)5L (L=CO or monophosphines)[J]. Polyhedron, 2021,196115007. doi: 10.1016/j.poly.2020.115007
Yan L, Hu K, Liu X F, Li Y L, Liu X H, Jiang Z Q. Diiron Ethane-1, 2-dithiolate Complexes with 1, 2, 3-Thiadiazole Moiety: Synthesis, X-ray Crystal Structures, Electrochemistry and Fungicidal Activity[J]. Appl. Organomet. Chem., 2021,35(2)e6084.
Zhang X, Zhang T Y, Li B, Zhang G H, Hai L, Ma X Y, Wu W B. Direct Synthesis of Phenol by Novel [FeFe]-Hydrogenase Model Complexes as Catalysts of Benzene Hydroxylation with H2O2[J]. RSC Adv., 2017,7(5):2934-2942. doi: 10.1039/C6RA27831K
Lin H M, Mu C, Li A, Liu X F, Li Y L, Jiang Z Q, Wu H K. Synthesis, Characterization, and Electrochemistry of Phosphine-Substituted Diiron Butane-1, 2-dithiolate Complexes[J]. J. Coord. Chem., 2019,72(15):2517-2530. doi: 10.1080/00958972.2019.1659248
APEX2, Version 2009.7-0, Bruker AXS, Inc., Madison, WI, 2007.
Sheldrick G M. SADABS: Program for Absorption Correction of Area Detector Frames. Bruker AXS Inc. : Madison, WI, 2001.
Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726
Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.
Li P, Wang M, He C J, Li G H, Liu X Y, Chen C N, Åkermark B, Sun L C. Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of[(μ-S2C3H6)Fe2(CO)6-nLn] (L=PMe2Ph, n=1, 2; PPh3, P(OEt)3, n=1)[J]. Eur. J. Inorg. Chem., 2005,2005(12):2506-2513. doi: 10.1002/ejic.200400947
Lin H M, Li J R, Mu C, Li A, Liu X F, Zhao P H, Li Y L, Jiang Z Q, Wu H K. Synthesis, Characterization, and Electrochemistry of Monophosphine-Containing Diiron Propane-1, 2-dithiolate Complexes Related to the Active Site of[FeFe]-Hydrogenases[J]. Appl. Organomet. Chem., 2019,33(11)e5196.
Gao W M, Ekström J, Liu J H, Chen C N, Eriksson L, Weng L H, Åkermark B, Sun L C. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction[J]. Inorg. Chem., 2007,46(6):1981-1991. doi: 10.1021/ic0610278
Zhao P H, Hu M Y, Li J R, Ma Z Y, Wang Y Z, He J, Li Y L, Liu X F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} Related to[FeFe]-Hydrogenases[J]. Organometallics, 2019,38(2):385-394. doi: 10.1021/acs.organomet.8b00759
Chen F Y, He J, Mu C, Liu X F, Li Y L, Jiang Z Q, Wu H K. Synthesis and Characterization of Five Diiron Ethanedithiolate Complexes with Acetate Group and Phosphine Ligands[J]. Polyhedron, 2019,160:74-82. doi: 10.1016/j.poly.2018.12.027
Yan L, Yang J, Lü S, Liu X F, Li Y L, Liu X H, Jiang Z Q. Phosphine-Containing Diiron Propane-1, 2-dithiolate Derivatives: Synthesis, Spectroscopy, X-ray Crystal Structures, and Electrochemistry[J]. Catal. Lett., 2021,151(7):1857-1867. doi: 10.1007/s10562-020-03450-2
Lian M, He J, Yu X Y, Mu C, Liu X F, Li Y L, Jiang Z Q. Diiron Ethanedithiolate Complexes with Acetate Ester: Synthesis, Characterization and Electrochemical Properties[J]. J. Organomet. Chem., 2018,870:90-96. doi: 10.1016/j.jorganchem.2018.06.023
Adam F I, Hogarth G, Richards I. Models of the Iron-Only Hydrogenase: Reactions of[Fe2(CO)6(μ-pdt)] with Small Bite-Angle Diphosphines Yielding Bridge and Chelate Diphosphine Complexes[Fe2(CO)4(diphosphine)(μ-pdt)][J]. J. Organomet. Chem., 2007,692(18):3957-3968. doi: 10.1016/j.jorganchem.2007.05.050
Liu X F, Ma Z Y, Jin B, Wang D, Zhao P H. Substituent Effects of Tertiary Phosphines on the Structures and Electrochemical Performances of Azadithiolato-Bridged Diiron Model Complexes of[FeFe]-Hydrogenases[J]. Appl. Organomet. Chem., 2022,36(7)e6751.
Si Y T, Charreteur K, Capon J, Gloaguen F, Pétillon F, Schollhammer P, Talarmin J. Non-innocent bma Ligand in a Dissymetrically Disubstituted Diiron Dithiolate Related to the Active Site of the[FeFe] Hydrogenases[J]. J. Inorg. Biochem., 2010,104(10):1038-1042. doi: 10.1016/j.jinorgbio.2010.05.011
Chong D, Georgakaki I P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M P, Darensbourg M Y. Electrocatalysis of Hydrogen Production by Active Site Analogs of the Iron Hydrogenase Enzyme: Structure/Function Relationships[J]. Dalton Trans., 2003:4158-4163.
Hu M Y, Zhao P H, Li J R, Gu X L, Jing X B, Liu X F. Synthesis, Structures, and Electrocatalytic Properties of Phosphine-Monodentate, -Chelate, and - Bridge Diiron 2, 2-Dimethylpropanedithiolate Complexes Related to[FeFe]-Hydrogenases[J]. Appl. Organomet. Chem., 2020,34(4)e5523.
Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate[J]. J. Am. Chem. Soc., 2001,123(38):9476-9477.
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
ccomplex=1.0 mmol·L-1
ccomplex=1.0 mmol·L-1
ccomplex=1.0 mmol·L-1
ccomplex=1.0 mmol·L-1
ccomplex=1.0 mmol·L-1