Citation: Zhi-Kang JIN, Tong WEI, Chao XU, Hong-Bo JIA, Jun-Jie SONG, Hong-Liang ZHU, Xiang-Bo-Wen DU, Zheng-Xin PENG, Gang WANG, Jun LIU, Hong-Yun DING, Fan HE, Min WANG, Ren-Hong LI. Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2392-2400. doi: 10.11862/CJIC.2022.242 shu

Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 23 May 2022
    Revised Date: 11 October 2022

Figures(8)

  • In this paper, a simple calcination process was used to synthesize nanocrystalline cobalt boride (CoB), which was employed to catalyze the hydrolysis of ammonia borane solution at room temperature. Specifically, it was found that the CoB exhibited high performance with a turnover frequency (TOF) of 35.3 molH2·molcat-1·min-1, which is superior to platinum (TOF=29.3 molH2·molcat-1·min-1). It still possessed excellent catalytic hydrogen production performance after repeated testing for 8 times. We found that Co0 species on the surface of CoB is a possible catalytic active site, and the boron site on the surface can effectively assist the Co0 site to achieve the synergistic catalytic hydrogen production from ammonia borane.
  • 加载中
    1. [1]

      Qiang X, Chandra M. Catalytic Activities of Non-noble Metals for Hydrogen Generation from Aqueous Ammonia-Borane at Room Temperature[J]. J. Power Sources, 2006,163(1):364-37. doi: 10.1016/j.jpowsour.2006.09.043

    2. [2]

      Zhou Q X, Xu C X. Stratified Nanoporous PtTi Alloys for Hydrolysis of Ammonia Borane[J]. J. Colloid Interface Sci., 2017,496:235-242. doi: 10.1016/j.jcis.2017.02.030

    3. [3]

      Ozhava D, Ozkar S. Nanoceria Supported Rhodium(0) Nanoparticles as Catalyst for Hydrogen Generation from Methanolysis of Ammonia Borane[J]. Appl. Catal. B-Environ., 2018,237:1012-1020. doi: 10.1016/j.apcatb.2018.06.064

    4. [4]

      Tunç N, Rakap M. Preparation and Characterization of Ni-M (M: Ru, Rh, Pd) Nanoclusters as Efficient Catalysts for Hydrogen Evolution from Ammonia Borane Methanolysis[J]. Renewable Energy, 2020,155:1222-1230. doi: 10.1016/j.renene.2020.04.079

    5. [5]

      Alpaydın C Y, Gülbay S K, Colpan O C. A Review on the Catalysts Used for Hydrogen Production from Ammonia Borane[J]. Int. J. Hydrog. Energy, 2020,45(5):3414-3434. doi: 10.1016/j.ijhydene.2019.02.181

    6. [6]

      Kang Y Q, Jiang B, Yang J J, Wan Z, Jongbeom N, Li Q, Li H X, Joel H, Yoshio S, Yusuke Y, Toru A. Amorphous Alloy Architectures in Pore Walls: Mesoporous Amorphous NiCoB Alloy Spheres with Controlled Compositions via a Chemical Reduction[J]. ACS Nano, 2020,14(12):17224-17232. doi: 10.1021/acsnano.0c07178

    7. [7]

      Yang X, Li Q L, Li L L, Yang X J, Yu C, Liu Z Y, Fang Y, Huang Y, Tang C C. CuCo Binary Metal Nanoparticles Supported on Boron Nitride Nanofibers as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane[J]. J. Power Sources, 2019,431(15):135-143.

    8. [8]

      Lu D S, Li J H, Lin C H, Liao J Y, Feng Y F, Ding Z T, Li Z W, Liu Q B, Li H. A Simple and Scalable Route to Synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 Yolk-Shell Microspheres, a High-Performance Catalyst to Hydrolyze Ammonia Borane for Hydrogen Production[J]. Small, 2019,15(10)1805460. doi: 10.1002/smll.201805460

    9. [9]

      Saad A, Gao Y, Owusu K A, Liu W, Wu Y, Ramiere A, Guo H, Tsiakaras P, Cai X. Ternary Mo2NiB2 as a Superior Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2022,18(6)2104303. doi: 10.1002/smll.202104303

    10. [10]

      Fu Z C, Xu Y, Chan L F, Sharon L, Wang W W, Li F, Liang F, Chen Y, Lin Z S, Fu W F, Che C M. Highly Efficient Hydrolysis of Ammonia Borane by Anion (OH-, F-, Cl-)-Tuned Interactions between Reactant Molecules and CoP Nanoparticles[J]. Chem. Commun., 2017,53(4):705-708. doi: 10.1039/C6CC08120G

    11. [11]

      Wang C, Tuninetti J, Wang Z, Zhang C, Roberto C, Lionel S, Sergio M, Jaime R, Didier A. Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nano Catalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release[J]. J. Am. Chem. Soc., 2017,139(33):11610-11615. doi: 10.1021/jacs.7b06859

    12. [12]

      Chandra M, Qiang X. Dissociation and Hydrolysis of Ammonia-Borane with Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System[J]. J. Power Sources, 2006,159(2):855-860. doi: 10.1016/j.jpowsour.2005.12.033

    13. [13]

      Yang J, Cheng F Y, Jing L, Chen J. Hydrogen Generation by Hydrolysis of Ammonia Borane with a Nanoporous Cobalt-Tungsten-Boron-Phosphorus Catalyst Supported on Ni Foam[J]. Int. J. Hydrog. Energy, 2011,36(2):1411-1417. doi: 10.1016/j.ijhydene.2010.10.066

    14. [14]

      Li P, Huang Y Q, Huang Q H, Chen R, Li J X, Tian S H. Cobalt Phosphide with Porous Multishelled Hollow Structure Design Realizing Promoted Ammonia Borane Dehydrogenation: Elucidating Roles of Architectural and Electronic Effect[J]. Appl. Catal. B-Environ., 2022,313:12144-12155.

    15. [15]

      Tong D G, Zeng X L, Chu W, Wang D, Wu P. Magnetically Recyclable Hollow Co-B Nanospindles as Catalysts for Hydrogen Generation from Ammonia Borane[J]. J. Mater. Sci., 2010,45(11):2862-2867. doi: 10.1007/s10853-010-4275-0

    16. [16]

      Yang Y, Zhang F, Wang H, Yao Q L, Chen X S, Lu Z H. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation[J]. J. Nanomater., 2014:1-9.

    17. [17]

      Lan Y, Nan C, Cheng D, Dai H M, Hu K, Luo W, Cheng G Z. Graphene Supported Cobalt(0) Nanoparticles for Hydrolysis of Ammonia Borane[J]. Mater. Lett., 2014,115(15):113-116.

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(14)
  • Abstract views(892)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return