Citation: Zhi-Kang JIN, Tong WEI, Chao XU, Hong-Bo JIA, Jun-Jie SONG, Hong-Liang ZHU, Xiang-Bo-Wen DU, Zheng-Xin PENG, Gang WANG, Jun LIU, Hong-Yun DING, Fan HE, Min WANG, Ren-Hong LI. Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2392-2400. doi: 10.11862/CJIC.2022.242 shu

Synthesis of Nanocrystalline Cobalt Boride for Efficient Catalytic Hydrogen Production via Ammonia Borane Hydrolysis

  • Corresponding author: Ren-Hong LI, lirenhong@zstu.edu.cn
  • Received Date: 23 May 2022
    Revised Date: 11 October 2022

Figures(8)

  • In this paper, a simple calcination process was used to synthesize nanocrystalline cobalt boride (CoB), which was employed to catalyze the hydrolysis of ammonia borane solution at room temperature. Specifically, it was found that the CoB exhibited high performance with a turnover frequency (TOF) of 35.3 molH2·molcat-1·min-1, which is superior to platinum (TOF=29.3 molH2·molcat-1·min-1). It still possessed excellent catalytic hydrogen production performance after repeated testing for 8 times. We found that Co0 species on the surface of CoB is a possible catalytic active site, and the boron site on the surface can effectively assist the Co0 site to achieve the synergistic catalytic hydrogen production from ammonia borane.
  • 加载中
    1. [1]

      Qiang X, Chandra M. Catalytic Activities of Non-noble Metals for Hydrogen Generation from Aqueous Ammonia-Borane at Room Temperature[J]. J. Power Sources, 2006,163(1):364-37. doi: 10.1016/j.jpowsour.2006.09.043

    2. [2]

      Zhou Q X, Xu C X. Stratified Nanoporous PtTi Alloys for Hydrolysis of Ammonia Borane[J]. J. Colloid Interface Sci., 2017,496:235-242. doi: 10.1016/j.jcis.2017.02.030

    3. [3]

      Ozhava D, Ozkar S. Nanoceria Supported Rhodium(0) Nanoparticles as Catalyst for Hydrogen Generation from Methanolysis of Ammonia Borane[J]. Appl. Catal. B-Environ., 2018,237:1012-1020. doi: 10.1016/j.apcatb.2018.06.064

    4. [4]

      Tunç N, Rakap M. Preparation and Characterization of Ni-M (M: Ru, Rh, Pd) Nanoclusters as Efficient Catalysts for Hydrogen Evolution from Ammonia Borane Methanolysis[J]. Renewable Energy, 2020,155:1222-1230. doi: 10.1016/j.renene.2020.04.079

    5. [5]

      Alpaydın C Y, Gülbay S K, Colpan O C. A Review on the Catalysts Used for Hydrogen Production from Ammonia Borane[J]. Int. J. Hydrog. Energy, 2020,45(5):3414-3434. doi: 10.1016/j.ijhydene.2019.02.181

    6. [6]

      Kang Y Q, Jiang B, Yang J J, Wan Z, Jongbeom N, Li Q, Li H X, Joel H, Yoshio S, Yusuke Y, Toru A. Amorphous Alloy Architectures in Pore Walls: Mesoporous Amorphous NiCoB Alloy Spheres with Controlled Compositions via a Chemical Reduction[J]. ACS Nano, 2020,14(12):17224-17232. doi: 10.1021/acsnano.0c07178

    7. [7]

      Yang X, Li Q L, Li L L, Yang X J, Yu C, Liu Z Y, Fang Y, Huang Y, Tang C C. CuCo Binary Metal Nanoparticles Supported on Boron Nitride Nanofibers as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane[J]. J. Power Sources, 2019,431(15):135-143.

    8. [8]

      Lu D S, Li J H, Lin C H, Liao J Y, Feng Y F, Ding Z T, Li Z W, Liu Q B, Li H. A Simple and Scalable Route to Synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 Yolk-Shell Microspheres, a High-Performance Catalyst to Hydrolyze Ammonia Borane for Hydrogen Production[J]. Small, 2019,15(10)1805460. doi: 10.1002/smll.201805460

    9. [9]

      Saad A, Gao Y, Owusu K A, Liu W, Wu Y, Ramiere A, Guo H, Tsiakaras P, Cai X. Ternary Mo2NiB2 as a Superior Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2022,18(6)2104303. doi: 10.1002/smll.202104303

    10. [10]

      Fu Z C, Xu Y, Chan L F, Sharon L, Wang W W, Li F, Liang F, Chen Y, Lin Z S, Fu W F, Che C M. Highly Efficient Hydrolysis of Ammonia Borane by Anion (OH-, F-, Cl-)-Tuned Interactions between Reactant Molecules and CoP Nanoparticles[J]. Chem. Commun., 2017,53(4):705-708. doi: 10.1039/C6CC08120G

    11. [11]

      Wang C, Tuninetti J, Wang Z, Zhang C, Roberto C, Lionel S, Sergio M, Jaime R, Didier A. Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nano Catalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release[J]. J. Am. Chem. Soc., 2017,139(33):11610-11615. doi: 10.1021/jacs.7b06859

    12. [12]

      Chandra M, Qiang X. Dissociation and Hydrolysis of Ammonia-Borane with Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System[J]. J. Power Sources, 2006,159(2):855-860. doi: 10.1016/j.jpowsour.2005.12.033

    13. [13]

      Yang J, Cheng F Y, Jing L, Chen J. Hydrogen Generation by Hydrolysis of Ammonia Borane with a Nanoporous Cobalt-Tungsten-Boron-Phosphorus Catalyst Supported on Ni Foam[J]. Int. J. Hydrog. Energy, 2011,36(2):1411-1417. doi: 10.1016/j.ijhydene.2010.10.066

    14. [14]

      Li P, Huang Y Q, Huang Q H, Chen R, Li J X, Tian S H. Cobalt Phosphide with Porous Multishelled Hollow Structure Design Realizing Promoted Ammonia Borane Dehydrogenation: Elucidating Roles of Architectural and Electronic Effect[J]. Appl. Catal. B-Environ., 2022,313:12144-12155.

    15. [15]

      Tong D G, Zeng X L, Chu W, Wang D, Wu P. Magnetically Recyclable Hollow Co-B Nanospindles as Catalysts for Hydrogen Generation from Ammonia Borane[J]. J. Mater. Sci., 2010,45(11):2862-2867. doi: 10.1007/s10853-010-4275-0

    16. [16]

      Yang Y, Zhang F, Wang H, Yao Q L, Chen X S, Lu Z H. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation[J]. J. Nanomater., 2014:1-9.

    17. [17]

      Lan Y, Nan C, Cheng D, Dai H M, Hu K, Luo W, Cheng G Z. Graphene Supported Cobalt(0) Nanoparticles for Hydrolysis of Ammonia Borane[J]. Mater. Lett., 2014,115(15):113-116.

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    11. [11]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(18)
  • Abstract views(1330)
  • HTML views(391)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return