Citation: Jing-Xiang ZHANG, Wai-Kwok WONG, Ka-Leung WONG, Nai-Ki MAK. Highly Conjugated Tetraphenylporphyrin-Ru(Ⅱ) Bipyridine Complex: Synthesis, Optical Properties, and Photodynamic Anticancer Activity[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2383-2391. doi: 10.11862/CJIC.2022.240 shu

Highly Conjugated Tetraphenylporphyrin-Ru(Ⅱ) Bipyridine Complex: Synthesis, Optical Properties, and Photodynamic Anticancer Activity

  • Corresponding author: Jing-Xiang ZHANG, zhangjx@hstc.edu.cn
  • Received Date: 10 May 2022
    Revised Date: 4 September 2022

Figures(6)

  • Two amphiphilic porphyrin-ruthenium (Ⅱ) complexes PorRu and PorZn-Ru were synthesized by the coordination of metal Ru(Ⅱ) and porphyrin-phenanthroline ligand L which is modified with conjugated pyrazine ring at the β position of porphyrin. Two compounds were characterized and evaluated by NMR and mass spectrometry, linear and nonlinear spectral analysis, and photodynamic anti-cancer activity study. Experimental results show that the two compounds had very high 1O2 quantum yields (0.93, 0.82), high two-photon absorption cross-sections (619, 621 GM), and up to about 22 nmol per 106 cell uptakes of nasopharyngeal carcinoma HK-1 cell line. Although no obvious subcellular target was observed by the costaining cell images, the high 1O2 yields and good cellular uptakes still made the ruthenium compounds have good photodynamic anticancer activity against HK-1 cells. At the light dose of 2 J·cm-2 and the administration concentration of 4 μmol·L-1, the inhibition efficiency reached (87.44±2.21)% and (45.03±2.85)% respectively.
  • 加载中
    1. [1]

      Lan M H, Zhao S J, Liu W M, Lee C S, Zhang W J, Wang P F. Photosensitizers for Photodynamic Therapy[J]. Adv. Healthc. Mater., 2019,8(13)1900132. doi: 10.1002/adhm.201900132

    2. [2]

      Chen J M, Fan T J, Xie Z J, Zeng Q Q, Xue P, Zheng T T, Chen Y Y, Luo X L, Zhang H. Advances in Nanomaterials for Photodynamic Therapy Applications: Status and Challenges[J]. Biomaterials, 2020,237119827. doi: 10.1016/j.biomaterials.2020.119827

    3. [3]

      Li X S, Kwon N, Guo T, Liu Z, Yoon J. Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy[J]. Angew. Chem. Int. Ed., 2018,57(36):11522-11534. doi: 10.1002/anie.201805138

    4. [4]

      Xie J L, Wang Y W, Choi W, Jangili P, Ge Y Q, Xu Y J, Kang J L, Liu L P, Zhang B, Xie Z J, He J, Xie N, Nie G H, Zhang H, Kim J S. Overcoming Barriers in Photodynamic Therapy Harnessing Nano-Formulation Strategies[J]. Chem. Soc. Rev., 2021,50:9152-9201. doi: 10.1039/D0CS01370F

    5. [5]

      Zhao X Z, Liu J P, Fan J L, Chao H, Peng X J. Recent Progress in Photosensitizers for Overcoming the Challenges of Photodynamic Therapy: From Molecular Design to Application[J]. Chem. Soc. Rev., 2021,50:4185-4219. doi: 10.1039/D0CS00173B

    6. [6]

      Huang T C, Yu Q, Liu S J, Huang W, Zhao Q. Phosphorescent Iridium(Ⅲ) Complexes: A Versatile Tool for Biosensing and Photodynamic Therapy[J]. Dalton Trans., 2018,47:7628-7633. doi: 10.1039/C8DT00887F

    7. [7]

      Wu Y P, Li S M, Chen Y C, He W J, Guo Z J. Recent Advances in Noble Metal Complex Based Photodynamic Therapy[J]. Chem. Sci., 2022,13(18):5085-5106. doi: 10.1039/D1SC05478C

    8. [8]

      Yi S L, Lu Z, Zhang J, Wang J, Xie Z H, Hou L X. Amphiphilic Gemini Iridium(Ⅲ) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(17):15276-15289. doi: 10.1021/acsami.9b01205

    9. [9]

      Huang H Y, Banerjee S, Sadler P J. Recent Advances in the Design of Targeted Iridium (Ⅲ) Photosensitizers for Photodynamic Therapy[J]. ChemBioChem, 2018,19:1574-1589. doi: 10.1002/cbic.201800182

    10. [10]

      LI J, JI L N, CHAO H. Biotin-Ruthenium (Ⅱ) Photosensitizer as Tumor-targeted Two-Photon Photodynamic Therapy//Proceedings of 11th Chinese Chemical Biology Conference of Chinese Chemical Society. Guangzhou: Chinese Chemical Society, 2019: 252

    11. [11]

      Bolze F, Jenni S, Sour A, Heitz V. Molecular Photosensitisers for Two-Photon Photodynamic Therapy[J]. Chem. Commun., 2017,53:12857-12877. doi: 10.1039/C7CC06133A

    12. [12]

      Xu L, Zhang J Z, Yin L F, Long X T, Zhang W Y, Zhang Q C. Recent Progress in Efficient Organic Two-Photon Dyes for Fluorescence Imaging and Photodynamic Therapy[J]. J. Mater. Chem. C, 2020,8:6342-6349. doi: 10.1039/D0TC00563K

    13. [13]

      Sun Z Y, Zhang L P, Wu F P, Zhao Y X. Photosensitizers for Two-Photon Excited Photodynamic Therapy[J]. Adv. Funct. Mater., 2017,27(48)1704079. doi: 10.1002/adfm.201704079

    14. [14]

      Zipfel W R, Williams R M, Webb W W. Nonlinear Magic: Multiphoton Microscopy in the Biosciences[J]. Nat. Biotechnol., 2003,211369. doi: 10.1038/nbt899

    15. [15]

      Zeng L L, Kuang S, Li G Y, Jin C Z, Ji L N, Chao H. A GSH-Activatable Ruthenium (Ⅱ)-Azo Photosensitizer for Two-Photon Photodynamic Therapy[J]. Chem. Commun., 2017,53:1977-1980. doi: 10.1039/C6CC10330H

    16. [16]

      Shen J C, Liao X X, Wu W J, Feng T, Karges J, Lin M W, Luo H J, Chen Y, Chao H. A pH-Responsive Iridium(Ⅲ) Two-Photon Photosensitizer Loaded CaCO 3 Nanoplatform for Combined Ca2+ Overload and Photodynamic Therapy[J]. Inorg. Chem. Front., 2022,9(16):4171-4183. doi: 10.1039/D2QI00951J

    17. [17]

      Ke L B, Wei F M, Xie L N, Karges J, Chen Y, Ji L N, Chao H. A Biodegradable Iridium (Ⅲ) Coordination Polymer for Enhanced Two-Photon Photodynamic Therapy Using an Apoptosis-Ferroptosis Hybrid Pathway[J]. Angew. Chem. Int. Ed., 2022,61e202205429.

    18. [18]

      Kuang S, Wei F M, Karges J, Ke L B, Xiong K, Liao X X, Gasser G, Ji L N, Chao H. Photodecaging of a Mitochondria-Localized Iridium(Ⅲ) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia[J]. J. Am. Chem. Soc., 2022,144(9):4091-4101. doi: 10.1021/jacs.1c13137

    19. [19]

      Karotki A, Khurana M, Lepock J R, Wilson B C. Simultaneous Two-Photon Excitation of Photofrin in Relation to Photodynamic Therapy[J]. Photochem. Photobiol., 2006,82:443-452. doi: 10.1562/2005-08-24-RA-657

    20. [20]

      Goyan R L, Cramb D T. Near-Infrared Two-Photon Excitation of Protoporphyrin Ⅸ : Photodynamics and Photoproduct Generation[J]. Photochem. Photobiol., 2000,72:821-827. doi: 10.1562/0031-8655(2000)0720821NITPEO2.0.CO2

    21. [21]

      Khurana M, Collins H A, Karotki A, Anderson H L, Cramb D T, Wilson B C. Quantitative In Vitro Demonstration of Two-Photon Photodynamic Therapy Using Photofrin® and Visudyne®[J]. Photochem. Photobiol., 2007,83:1441-1448. doi: 10.1111/j.1751-1097.2007.00185.x

    22. [22]

      Collins H A, Khurana M, Moriyama E H, Mariampillai , A , Dahlstedt E, Balaz M, Kuimova M K, Drobizhev M, Yang V X D, Phillips D, Rebane A, Wilson B C, Anderson H L. Blood-Vessel Closure Using Photosensitizers Engineered for Two-Photon Excitation[J]. Nat. Photonics, 2008,2:420-424. doi: 10.1038/nphoton.2008.100

    23. [23]

      Crossley M J, King L G. Novel Heterocyclic Systems from Selective Oxidation at the β-Pyrrolic Position of Porphyrins[J]. J. Chem. Soc. Chem. Commun., 1984(14):920-922. doi: 10.1039/C39840000920

    24. [24]

      Schmidt R, Afshari E. Comment on"Effect of Solvent on the Phosphorescence Rate Constant of Singlet Molecular Oxygen (1Δ g)"[J]. J. Phys. Chem., 1990,94:4377-4378. doi: 10.1021/j100373a096

    25. [25]

      Li Y J, Pritchett T M, Huang J D, Ke M R, Shao P, Sun W F. Photophysics and Nonlinear Absorption of Peripheral-Substituted Zinc Phthalocyanines[J]. J. Phys. Chem. A, 2008,112:7200-7207. doi: 10.1021/jp7108835

    26. [26]

      Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam[J]. IEEE J. Quantum Electron., 1990,26(4):760-769. doi: 10.1109/3.53394

    27. [27]

      He G S, Swiatkiewicz J, Yan J, Prasad P N. Two-Photon Excitation and Optical Spatial-Profile Reshaping via a Nonlinear Absorbing Medium[J]. J. Phys. Chem. A, 2000,104(20):4805-4810. doi: 10.1021/jp000370+

    28. [28]

      Mak N K, Leung W N, Wong R N S, Huang D P, Lung M L, Lau Y K, Chang C K. Involvement of Both Endoplasmic Reticulum and Mitochondria in Photokilling of Nasopharyngeal Carcinoma Cells by the Photosensitizer Zn-BC-AM[J]. Biochem. Pharmacol., 2004,68:2387-2396. doi: 10.1016/j.bcp.2004.08.024

    29. [29]

      REN L L, PENG X X, WANG S J, XIAO L W, LI Z Q. Syntheses, Spectral and Electrochemical Properties, Antitumor Activities of Manganese/Zinc Complexes with Porphyrin Modified by 5-Fluorouracil[J]. Chinese J. Inorg. Chem., 2019,35(6):965-970.  

    30. [30]

      Strachan J P, Gentemann S, Seth J, Kalsbeck W A, Lindsey J S, Holten D, Bocian D F. Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays[J]. J. Am. Chem. Soc., 1997,119:11191-11201. doi: 10.1021/ja971678q

    31. [31]

      ZHANG W Y, ZHANG X J, TONG J L, CHEN T C, TIAN J Q, HU R, WANG Z M. Optical Properties and Biological Applications of Meso-tetrakis (p-methylphenyl) Porphyrin and Its Cobalt Complex[J]. Chinese J. Inorg. Chem., 2018,34(12):2161-2171. doi: 10.11862/CJIC.2018.279

    32. [32]

      Ke H Z, Wang H D, Wong W K, Mak N K, Kwong D W, Wong K L, Tam H L. Responsive and Mitochondria-Specific Ruthenium (Ⅱ) Complex for Dual In Vitro Applications: Two-Photon (Near-Infrared) Induced Imaging and Regioselective Cell Killing[J]. Chem. Commun., 2010,46:6678-6680. doi: 10.1039/c0cc01848a

    33. [33]

      Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud J, Flamigni L, Ventura B. Diketopyrrolopyrrole-Porphyrin Conjugates with High Two-Photon Absorption and Singlet Oxygen Generation for Two-Photon Photodynamic Therapy[J]. Angew. Chem. Int. Ed., 2015,54(1):169-173. doi: 10.1002/anie.201407537

    34. [34]

      Engelmann F M, Mayer I, Gabrielli D S, Toma H E, Kowaltowski A J, Araki K, Baptista M S. Interaction of Cationic meso-Porphyrins with Liposomes, Mitochondria and Erythrocytes[J]. J. Bioenerg. Biomembr., 2007,39:175-185. doi: 10.1007/s10863-007-9075-0

    35. [35]

      Zhang J X, Zhou J W, Chan C F, Lau C K, Kwong W J, Tam H L, Mak N K, Wong K L, Wong W K. Comparative Studies of the Cellular Uptake, Subcellular Localization, and Cytotoxic and Phototoxic Antitumor Properties of Ruthenium (Ⅱ)-Porphyrin Conjugates with Different Linkers[J]. Bioconjugate Chem., 2012,23:1623-1638. doi: 10.1021/bc300201h

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(7)
  • Abstract views(558)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return