Citation: Han XU, Zhao-Rui PAN, Zhao-Peng QI, Jie SUN. Three Luminescent Zn-MOFs Based on V-Shaped Ligands for Fluorescence Sensing of 2, 4, 6-Trinitrophenol and Fe3+ in Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2479-2490. doi: 10.11862/CJIC.2022.238 shu

Three Luminescent Zn-MOFs Based on V-Shaped Ligands for Fluorescence Sensing of 2, 4, 6-Trinitrophenol and Fe3+ in Aqueous Solution

  • Corresponding author: Zhao-Rui PAN, pzr_2006@163.com
  • Received Date: 27 April 2022
    Revised Date: 1 September 2022

Figures(6)

  • Three Zn(Ⅱ)-based metal-organic frameworks with V-shaped ligands, namely {[Zn2(BIDPS)2(OBA)2]·DMA}n (1), {[Zn(BIDPT)(PA)]·DMF}n (2), and {[Zn(BIDPS)(PA)(H2O)2]·2H2O}n (3) (BIDPS =4, 4'-bis(imidazol-l-yl)-phenyl sulphone, H2OBA=4, 4'-oxybisbenzoic acid, H2PA=pamoic acid, BIDPT=4, 4'-bis(imidazol-l-yl)diphenyl thioether), have been hydrothermally synthesized and characterized by single X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and powder X-ray diffraction. Compound 1 shows a two-fold 3D network with cds topology. Compound 2 is a 2D (4, 4) layer network and shows a 2D → 3D parallel-parallel polycatenation framework. Compound 3 exhibits an infinite chain, and such 1D chains are further interlinked into a 3D supramolecular structure via intermolecular and intramolecular hydrogen bonds. Compounds 1-3 could stably exist in aqueous solutions with pH=4-10. Compounds 1-3 demonstrated strong luminescence in aqueous solution, and fluorescence studies show that 1-3 could detect 2, 4, 6-trinitrophenol and Fe3+ with high sensitivity and selectivity by luminescent sensing.
  • 加载中
    1. [1]

      Quay B L, Kitagawa S, Uemura T. Opening of an Accessible Microporosity in an Otherwise Nonporous Metal-Organic Framework by Polymetric Guests[J]. J. Am. Chem. Soc., 2017,139(23):7886-7892. doi: 10.1021/jacs.7b02402

    2. [2]

      Xu Z X, Liu L Y, Zhang J. Synthesis of Metal-Organic Zeolites with Homochirality and High Porosity for Enantioselective Separation[J]. Inorg. Chem., 2021,55(13):6355-6357.

    3. [3]

      Han J H, Hu B Q, Li T M, Liang H, Yu F, Wang L, Zhao Q, Li B. Modulating the Architectures of Cobalt Metal-Organic Frameworks to Fine-Tune Slow Magnetic Relaxation Behaviors[J]. Cryst. Growth Des., 2021,21(10):5678-5686. doi: 10.1021/acs.cgd.1c00524

    4. [4]

      Mon M, Bruno R, Ferrando S J, Armentano D, Pardo E. Metal-Organic Framework Technologies for Water Remediation: Towards a Sustainable Ecosystem[J]. J. Mater. Chem. A, 2018,6:4912-4947. doi: 10.1039/C8TA00264A

    5. [5]

      Chen Y Z, Zhang R, Jiao L, Jiang H L. Metal-Organic Framework-Derived Porous Materials for Catalysis[J]. Coord. Chem. Rev., 2018,362:1-23. doi: 10.1016/j.ccr.2018.02.008

    6. [6]

      He Y B, Chen F L, Li B, Qian G D, Zhou W, Chen B L. Porous Metal-Organic Frameworks for Fuel Storages[J]. Coord. Chem. Rev., 2018,373:167-198. doi: 10.1016/j.ccr.2017.10.002

    7. [7]

      Gole B, Bar A K, Mukherjee P S. Multicomponent Assembly of Fluorescent-Tag Functionalized Ligands in Metal-Organic Frameworks for Sensing Explosives[J]. Chem. Eur. J., 2014,20(42):13321-13326.

    8. [8]

      Tan B, Zhuang T H, Velasco E, Xing K, Wu Z F, Huang X Y. Syntheses, Structures, and Ratiometric Fluorescent Sensing Properties of a Series of Lanthanide Coordination Polymers[J]. Cryst. Growth Des., 2021,21(11):6543-6551. doi: 10.1021/acs.cgd.1c00979

    9. [9]

      Zhuang X R, Zhang X, Zhang N X, Wang Y, Zhao L Y, Yang Q F. Novel Multifunctional Zn Metal-Organic Framework Fluorescent Probe Demonstrating Unique Sensitivity and Selectivity for Detection of PA and Fe3+ Ions in Water Solution[J]. Cryst. Growth Des., 2019,19(10):5729-5736. doi: 10.1021/acs.cgd.9b00704

    10. [10]

      Zhai Z W, Yang S H, Cao M, Li L K, Du C X, Zang S Q. Rational Design of Three Two-Fold Interpenetrated Metal-Organic Frameworks: Luminescent Zn/Cd-Metal-Organic Frameworks for Detection of 2, 4, 6-Trinitrophenol and Nitrofurazone in the Aqueous Phase[J]. Cryst. Growth Des., 2018,18(11):7173-7182. doi: 10.1021/acs.cgd.8b01335

    11. [11]

      Dhankhars S S, Sharma N, Kumar S, Kumar T J, Nagaraja C M. Rational Design of a Bifunctional, Two-Fold Interpenetrated Zn-Metal-Organic Framework for Selective Adsorption of CO2 and Efficient Aqueous Phase Sensing of 2, 4, 6-Trinitrophenol[J]. Chem. Eur. J., 2017,23(1):1-10. doi: 10.1002/chem.201605561

    12. [12]

      Zhang Q F, Lei M Y, Yan H, Wang J Y, Shi Y. A Waste-Stable 3D Luminescent Metal-Organic Framework Based on Heterometallic[Eu6Zn] Clusters Showing Highly Sensitive, Selective, and Reversible Detection of Ronidazole[J]. Inorg. Chem., 2017,56(14):7610-7614. doi: 10.1021/acs.inorgchem.7b01156

    13. [13]

      Liu W B, Li N N, Zhang X, Zhao Y, Zong Z, Wu R X, Tong J P, Bi C F, Shao F, Fan Y H. Four Zn(Ⅱ)-MOFs as Highly Sensitive Chemical Sensor for the Rapid Detection of Tetracycline, o-Nitro phenol, Cr2O72-/PO43-, Fe3+/Al3+ in Water Environment[J]. Cryst. Growth Des., 2021,21(4):2056-2067. doi: 10.1021/acs.cgd.0c01492

    14. [14]

      Jiang Q J, Lin J Y, Hu Z J, Hsiao V K S, Chung M Y, Wu J Y. Luminescent Zinc(Ⅱ) Coordination Polymers of Bis(pyridine-4-yl)benzothiadiazole and Aromatic Polycarboxylates for Highly Selective Detection of Fe(Ⅲ) and High-Valent Oxyanions[J]. Cryst. Growth Des., 2021,21(10):5558-5572. doi: 10.1021/acs.cgd.1c00359

    15. [15]

      Dolgopolova E A, Rice A M, Martin C R, Shustova N B. Photochemistry and Photophysics of MOFs: Steps towards MOF-Based Sensing Enhancements[J]. Chem. Soc. Rev., 2018,47(13):4710-4728. doi: 10.1039/C7CS00861A

    16. [16]

      Luo X L, Yin Z, Zeng M H, Kurmoo M. The Construction, Structures, and Functions of Pillared Layer Metal-Organic Frameworks[J]. Inorg. Chem., 2016,3(10):1208-1226.

    17. [17]

      Hu J S, Shang Y J, Yao X Q, Qin L, Li Y Z, Guo Z J, Zheng H G, Xue Z L. Syntheses, Structure, and Photochemical Properties of Six New Metal-Organic Frameworks Based on Aromatic Dicarboxylate Acids and V-Shaped Imidazole Ligands[J]. Cryst. Growth Des., 2010,10(9):4135-4142. doi: 10.1021/cg1008208

    18. [18]

      Sheldrick G M. SHELXL 2014/7, Program for Crystal Structure Refinement, University of Göttingen, Germany, 2014.

    19. [19]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    20. [20]

      XU H, PAN Z R. Syntheses, Crystal Structures and Exceptionally Selective Detection of Picric Acid of Two Luminescent d10 Metal-Organic Frameworks[J]. Chinese J. Inorg. Chem., 2018,34(1):55-62.

    21. [21]

      Ghosh T K, Jana S, Ghosh A. Exploitation of the Flexidentate Nature of a Ligand to Synthesize Zn(Ⅱ) Complexes of Diverse Nuclearity and Their Use in Solid-State Naked Eye Detection and Aqueous Phase Sensing of 2, 4, 6-Trinitrophenol[J]. Inorg. Chem., 2018,57(24):15216-15228. doi: 10.1021/acs.inorgchem.8b02497

    22. [22]

      Gcwensa N, Chatterjee N, Oliver G L. Interchanged Hysteresis for Carbon Dioxide and Water Vapor Sorption in a Pair of Water-Stable, Breathing, Isorreticular, 2-Periodic, Zn(Ⅱ)-Based Mixed-Ligand Metal-Organic Frameworks[J]. Inorg. Chem., 2019,58(3):2080-2088. doi: 10.1021/acs.inorgchem.8b03148

    23. [23]

      Zhang M D, Qin L, Yang H T, Li Y Z, Guo Z J, Zheng H G. Series of Metal-Organic Frameworks Including Novel Architectural Features Based on a Star-like Tri(4-pyridylphenyl)amine Ligand[J]. Cryst. Growth Des., 2013,13(5):1961-1969. doi: 10.1021/cg3018612

    24. [24]

      Chen S G, Shi Z Z, Qin L, Jia H L, Zheng H G. Two New Luminescent Cd (Ⅱ)-Metal-Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe3+, Anions CrO42-, and Cr2O72- in Aqueous Solution[J]. Cryst. Growth Des., 2017,17(1):67-72. doi: 10.1021/acs.cgd.6b01197

    25. [25]

      Wang B, Lv X L, Feng D W, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. Highly Stable Zr(Ⅳ)-Based Metal-Organic Metal-Organic Frameworks for the Detection and Removal of Antibiotic and Organic Explosives in Water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    26. [26]

      Liu W, Wang Y L, Bai Z L, Li Y X, Wang Y X, Chen L H, Xu L, Juan D W, Chai Z F, Wang S A. Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems[J]. ACS Appl. Mater. Interfaces, 2017,9(19):16448-16457. doi: 10.1021/acsami.7b03914

    27. [27]

      Liu Y, Ma J J, Xu C, Yang Y, Xia M F, Jiang H, Liu W S. A Water-Stable Lanthanide Coordination Polymer as a Multi-Responsive Luminescent Sensor for Fe3+, Cr (Ⅵ) and 4-Nitrophenol[J]. Dalton Trans., 2018,47:13543-13549. doi: 10.1039/C8DT02202J

    28. [28]

      Fang Y M, Ye X, Xia L, Dong W W, Zhao J, Li D S. Four Different Dimensional Zn(Ⅱ) Coordination Polymers as Fluorescent Sensor for Detecting Hg2+, Cr2O72- in Aqueous Solution[J]. J. Solid State Chem., 2018,266:181-188. doi: 10.1016/j.jssc.2018.07.024

    29. [29]

      Arici M. Luminescent 2D+2D→2D Interpenetrated Zn(Ⅱ)-Coordination Polymer Based on Reduced Schiff Base Tricarboxylic Acid and Bis(imidazole) Ligand for Detection of Picric Acid and Fe3+ Ions[J]. Cryst. Growth Des., 2017,17(10):5499-5505. doi: 10.1021/acs.cgd.7b01024

    30. [30]

      Das D, Biradha K. Luminescent Coordination Polymers of Naphthalene Based Diamide with Rigid and Flexible Dicarboxylates: Sensing of Nitro Explosives, Fe(Ⅲ) Ion, and Dyes[J]. Cryst. Growth Des., 2018,18(6):3683-3692. doi: 10.1021/acs.cgd.8b00498

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    3. [3]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(3)
  • Abstract views(295)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return