Citation: Jing ZHANG, Yang YANG, Zhong WEI, Xu JING, Chun-Ying DUAN. Ferrocene-Functionalized Metal-Organic Macrocycles Mimicking Hydrogenase for Photocatalytic Nitro Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2469-2478. doi: 10.11862/CJIC.2022.237 shu

Ferrocene-Functionalized Metal-Organic Macrocycles Mimicking Hydrogenase for Photocatalytic Nitro Reduction

  • Corresponding author: Xu JING, xjing@dlut.edu.cn
  • Received Date: 19 April 2022
    Revised Date: 5 September 2022

Figures(4)

  • Two novel metal-organic macrocycles (MFe and MCu) were constructed using the flexible and redox-active ferrocene ligand. The macrocycles effectively quenched the fluorescence of organic dyes and exhibited the capability to trigger the photoinduced electron transfer. Due to relatively lower reduction potentials, MCu exhibited better catalytic features for proton reduction and could better catalyze the reduction of nitro compounds. The large size of the substrates leads to a decreased efficiency in the nitro reduction process. The Michaelis-Menten mechanism was used to verify the photocatalytic system, which revealed the importance of the interaction between substrate and catalyst.
  • 加载中
    1. [1]

      Eisenmesser E Z, Bosco D A, Akke M, Kern D. Enzyme Dynamics During Catalysis[J]. Science, 2002,295:1520-1523. doi: 10.1126/science.1066176

    2. [2]

      Ueda Y, Ito H, Fujita D, Fujita M. Permeable Self-Assembled Molecular Containers for Catalyst Isolation Enabling Two-Step Cascade Reactions[J]. J. Am. Chem. Soc., 2017,139(17):6090-6093. doi: 10.1021/jacs.7b02745

    3. [3]

      Cullen W, Metherell A J, Wragg A B, Taylor C G P, Williams N H, Ward M D. Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis[J]. J. Am. Chem. Soc., 2018,140(8):2821-2828. doi: 10.1021/jacs.7b11334

    4. [4]

      Jing X, Yang Y, He C, Chang Z D, Reek J N H, Duan C Y. Control of Redox Events by Dye Encapsulation Applied to Light-Driven Splitting of Hydrogen Sulfide[J]. Angew. Chem. Int. Ed., 2017,56(39):11759-11763. doi: 10.1002/anie.201704327

    5. [5]

      Hooley R J. Taking on the Turnover Challenge[J]. Nat. Chem., 2016,8(3):202-204. doi: 10.1038/nchem.2461

    6. [6]

      Li J W, Ren Y W, Qi C R, Jiang H F. The First Porphyrin-Salen Based Chiral Metal-Organic Framework for Asymmetric Cyanosilylation of Aldehydes[J]. Chem. Commun., 2017,53(58):8223-8226. doi: 10.1039/C7CC03499G

    7. [7]

      Wu F, Qiu L G, Ke F, Jiang X. Copper Nanoparticles Embedded in Metal-Organic Framework MIL-101(Cr) as a High Performance Catalyst for Reduction of Aromatic Nitro Compounds[J]. Inorg. Chem. Commun., 2013,32:5-8. doi: 10.1016/j.inoche.2013.03.003

    8. [8]

      Ma Y Y, Peng H Y, Liu J N, Wang Y H, Hao X L, Feng X J, Khan S U, Tan H Q, Li Y G. Polyoxometalate-Based Metal-Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes[J]. Inorg. Chem., 2018,57(7):4109-4116. doi: 10.1021/acs.inorgchem.8b00282

    9. [9]

      Yang Y, Li H N, Jing X, Wu Y C, Shi Y P, Duan C Y. Dye-Loaded Metal-Organic Helical Capsules Applied to the Combination of Photocatalytic H2S Splitting and Nitroaromatic Hydrogenation[J]. Chem. Commun., 2022,58(6):807-810. doi: 10.1039/D1CC06166F

    10. [10]

      Jin Y H, Zhang Q Q, Zhang Y Q, Duan C Y. Electron Transfer in the Confined Environments of Metal-Organic Coordination Supramolecular Systems[J]. Chem. Soc. Rev., 2020,49(15):5561-5600. doi: 10.1039/C9CS00917E

    11. [11]

      Jing X, He C, Zhao L, Duan C Y. Photochemical Properties of Host-Guest Supramolecular Systems with Structurally Confined Metal-Organic Capsules[J]. Acc. Chem. Res., 2019,52(1):100-109. doi: 10.1021/acs.accounts.8b00463

    12. [12]

      LI H C, LI M F, HE C, DUAN C Y. Construction of a Noble-Metal-Free Nickel Metal-Organic Macrocycle for Photocatalytic Hydrogen Production[J]. Chinese J. Inorg. Chem., 2018,34(1):11-19.  

    13. [13]

      YANG L L, JING X, HE C, DUAN C Y. Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety[J]. Chinese J. Inorg. Chem., 2017,33(6):913-922.  

    14. [14]

      ZHANG W Y, YANG Y, HUANG H L, JING X, DUAN C Y. Photocatalytic Hydrogen Production Based on Metal-Organic Triangle Modified by Fluorescein Isothiocyanate[J]. Chinese J. Inorg. Chem., 2020,36(10):1988-1996.  

    15. [15]

      Liu H L, Chang L N, Chen L Y, Li Y W. Nanocomposites of Platinum/Metal-Organic Frameworks Coated with Metal-Organic Frameworks with Remarkably Enhanced Chemoselectivity for Cinnamaldehyde Hydrogenation[J]. ChemCatChem, 2016,8(5):946-951. doi: 10.1002/cctc.201501256

    16. [16]

      Zhang J Z, An B, Li Z, Cao Y H, Dai Y H, Wang W Y, Zeng L Z, Lin W B, Wang C. Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO2 Hydrogenation[J]. J. Am. Chem. Soc., 2021,143(23):8829-8837. doi: 10.1021/jacs.1c03283

    17. [17]

      Vasdev R A S, Findlay J A, Garden A L, Crowley J D. Redox Active [Pd2L4]4+ Cages Constructed from Rotationally Flexible 1, 1'-Disubstituted Ferrocene Ligands[J]. Chem. Commun., 2019,55(52):7506-7509. doi: 10.1039/C9CC03321A

    18. [18]

      Horikoshi R. Discrete Metal Complexes from N-Heterocyclic Ferrocenes: Structural Diversity by Ligand Design[J]. Coord. Chem. Rev., 2013,257(3/4):621-637.

    19. [19]

      Plajer A J, Rizzuto F J, Krbek L K S, Gisbert Y, Agramunt V M, Nitschke J R. Oxidation Triggers Guest Dissociation During Reorganization of an Fe 4L6 Twisted Parallelogram[J]. Chem. Sci., 2020,11(38):10399-10404. doi: 10.1039/D0SC04352D

    20. [20]

      Coleman M H. Graphical Analysis of Enzyme Kinetic Data[J]. Nature, 1965,205:798-799. doi: 10.1038/205798a0

    21. [21]

      Michaelis L, Menten M L. The Kinetics of Invertin Action[J]. FEBS Lett., 2013,587(17):2712-2720. doi: 10.1016/j.febslet.2013.07.015

    22. [22]

      Armarego W L F, Chai C L L. Purification of Laboratory Chemicals. 6th ed. Burlington: Elsevier, 2009: 27-28

    23. [23]

      Li M X, Cai P, Duan C Y, Lu F, Xie J, Meng Q J. Octanuclear Metallocyclic Ni4Fc4 Compound: Synthesis, Crystal Structure, and Electrochemical Sensing for Mg2+[J]. Inorg. Chem., 2004,43:5174-5176. doi: 10.1021/ic049530c

    24. [24]

      SMART, Data Collection Software, Version 5.629. Bruker AXS Inc., Madison, WI, 2003.

    25. [25]

      SAINT, Data Reduction Software, Version 6.54. Bruker AXS Inc., Madison, WI, 2003.

    26. [26]

      Bourhis L J, Dolomanov O V, Gildea R J, Howard J A K, Puschmann H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment-Olex2 Dissected[J]. Acta Crystallogr. Sect. A, 2015,A71:59-75.

    27. [27]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    28. [28]

      Sheldrick G M. A Short History of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    29. [29]

      Du P W, Eisenberg R. Catalysts Made of Earth-Abundant Elements (Co, Ni, Fe) for Water Splitting: Recent Progress and Future Challenges[J]. Energy Environ. Sci., 2012,5(3):6012-6021.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    3. [3]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    4. [4]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    11. [11]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    18. [18]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    19. [19]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    20. [20]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

Metrics
  • PDF Downloads(3)
  • Abstract views(293)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return