Citation: Zhi-Guo WANG, Ying-Ying DENG, Jiao-E DANG, Yong-Wei ZHANG, Li-Shan ZHANG, Xin A, Si-Ning YUN. Construction and Catalytic Properties of Fe/Cu Modified Nitrogen-Doped Carbon with Carbon Nanotube[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2181-2190. doi: 10.11862/CJIC.2022.234 shu

Construction and Catalytic Properties of Fe/Cu Modified Nitrogen-Doped Carbon with Carbon Nanotube

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 7 April 2022
    Revised Date: 20 September 2022

Figures(7)

  • Cu-modified nitrogen-doped carbon (Cu-N-C) and Fe/Cu-modified nitrogen-doped carbon with carbon nanotube (Fe/Cu-N-C/CNT) catalysts were prepared by in situ chemical synthesis combined with an ion exchange method. As counter electrode in dye-sensitized solar cells (DSSCs), the electrochemical properties and photovoltaic performance of these two catalysts in I3-/I- electrolyte were explored. The structure and morphology of as-prepared catalysts were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectra (XPS), and field emission scanning electron microscope (FESEM). The results showed that the graphitization degree of Fe/Cu-N-C/CNT was higher than that of Cu-N-C, which is more favorable for charge transfer during I3- reduction process. The photovoltaic tests results showed that the DSSCs based on Fe/Cu-N-C/CNT CE achieved a power conversion efficiency (PCE) of 7.55%, higher than Cu-N-C (6.99%) and Pt (6.76%) under the same conditions. 50 cycles continuous cyclic voltammetry scanning showed that Fe/Cu-N-C/CNT had better electrochemical stability than Cu-N-C. This robust behavior can be mainly attributed to the synergistic effect between the bimetallic active sites (Fe/Cu) and the nitrogen-doped carbon network with CNTs, which results in a pronounced decrease in the charge-transfer resistance and superior device stability.
  • 加载中
    1. [1]

      Yun S N, Qin Y, Uhl A R, Vlachopoulos N, Yin M, Li D D, Han X G, Hagfeldt A. New - Generation Integrated Devices Based on Dye - Sensitized and Perovskite Solar Cells[J]. Energy Environ. Sci., 2018,11(3):476-526. doi: 10.1039/C7EE03165C

    2. [2]

      Balamurugan J, Thanh T, Kim N, Lee J. Nitrogen - Doped Graphene Nanosheets with FeN Core-Shell Nanoparticles as High-Performance Counter Electrode Materials for Dye - Sensitized Solar Cells[J]. Adv. Mater. Interfaces, 2016,3(1)1500348. doi: 10.1002/admi.201500348

    3. [3]

      Kumar R, More V, Mohanty S P, Nemala S S, Mallick S, Bhargava P. A Simple Route to Making Counter Electrode for Dye Sensitized Solar Cells (DSSCs) Using Sucrose as Carbon Precursor[J]. J. Colloid Interface Sci., 2015,459:146-150. doi: 10.1016/j.jcis.2015.08.009

    4. [4]

      Wen X D, Qi H, Cheng Y, Zhang Q Q, Hou C M, Guan J Q. Cu Nanoparticles Embedded in N - Doped Carbon Materials for Oxygen Reduction Reaction[J]. Chinese J. Chem., 2020,38(9):941-946. doi: 10.1002/cjoc.202000073

    5. [5]

      Ni Y Y, Chen Z Y, Kong F T, Qiao Y, Kong A G, Shan Y K. Pony-Size Cu Nanoparticles Confined in N - Doped Mesoporous Carbon by Chemical Vapor Deposition for Efficient Oxygen Electroreduction[J]. Electrochim. Acta, 2018,272:233-241. doi: 10.1016/j.electacta.2018.04.002

    6. [6]

      Wang H X, Zhao Y R, Cheng F Y, Tao Z L, Chen J. Cobalt Nanoparticles Embedded in Porous N-Doped Carbon as Long-Life Catalysts for Hydrolysis of Ammonia Borane[J]. Catal. Sci. Technol., 2016,6(10):3443-3448. doi: 10.1039/C5CY01756D

    7. [7]

      Zhang T Y, Han X, Yang H B, Han A J, Hu E Y, Li Y P, Yang X Q, Wang L, Liu J F, Liu B. Atomically Dispersed Nickel(Ⅰ) on an Alloy- Encapsulated Nitrogen - Doped Carbon Nanotube Array for High - Performance Electrochemical CO2 Reduction Reaction[J]. Angew. Chem. Int. Ed., 2020,59(29):12055-12061. doi: 10.1002/anie.202002984

    8. [8]

      Li G L, Yang B B, Cun X X, Cao S, Shi Y T, Yan Y, Song X D, Hao C. FeNi Alloy Nanoparticles Encapsulated in Carbon Shells Supported on N-Doped Graphene-like Carbon as Efficient and Stable Bifunctional Oxygen Electrocatalysts[J]. Chem. Eur. J., 2020,26(13):2890-2896. doi: 10.1002/chem.201904685

    9. [9]

      Zhang Y W, Yun S N, Dang J E, Dang C W, Yang G P, Wang Y H, Liu Z L, Deng Y Y. Defect Engineering via Ternary Nonmetal Doping Boosts the Catalytic Activity of ZIF - Derived Carbon - Based Metal - Free Catalysts for Photovoltaics and Water Splitting[J]. Mater. Today Phys., 2022,27100785. doi: 10.1016/j.mtphys.2022.100785

    10. [10]

      Wang X, Yun S N, Zhang Y W, Zhang L S, Dang J E, Sun M L, Liu Z L, Wang Y H. Boosting Catalytic Activity of Niobium/Tantalum - Nitrogen Active - Sites for Triiodide Reduction in Photovoltaics[J]. J. Colloid Interface Sci., 2021,603:651-665. doi: 10.1016/j.jcis.2021.06.128

    11. [11]

      Kuang M, Wang Q H, Han P, Zheng G F. Cu, Co - Embedded N - Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions[J]. Adv. Energy Mater., 2017,7(17)1700193. doi: 10.1002/aenm.201700193

    12. [12]

      Xue Z, Jia L, Zhu R R, Du L, Zhao Q H. High-Performance Non- Enzymatic Glucose Electrochemical Sensor Constructed by Transition Nickel Modified Ni@Cu-MOF[J]. J. Electroanal. Chem., 2020,858113783. doi: 10.1016/j.jelechem.2019.113783

    13. [13]

      Wang Z Q, Yun S N, Wang X D, Wang C, Si Y M, Zhang Y L, Xu H F. Aloe Peel-Derived Honeycomb-like Bio-Based Carbon with Controllable Morphology and Its Superior Electrochemical Properties for New Energy Devices[J]. Ceram. Int., 2019,45(4):4208-4218. doi: 10.1016/j.ceramint.2018.11.091

    14. [14]

      Chen D, Li G F, Chen X, Zhang Q, Sui J, Li C J, Zhang Y C, Hu J, Yu J H, Yu L Y, Dong L F. Developing Nitrogen and Co/Fe/Ni Multidoped Carbon Nanotubes as High-Performance Bifunctional Catalyst for Rechargeable Zinc - Air Battery[J]. J. Colloid Interface Sci., 2021,593:204-213. doi: 10.1016/j.jcis.2021.02.115

    15. [15]

      Li G R, Wang F, Jiang Q W, Gao X P, Shen P W. Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2010,49(21):3653-3656. doi: 10.1002/anie.201000659

    16. [16]

      Zhao M Q, Liu X F, Zhang Q, Tian G L, Huang J Q, Zhu W C, Wei F. Graphene/Single - Walled Carbon Nanotube Hybrids: One - Step Catalytic Growth and Applications for High-Rate Li-S Batteries[J]. ACS Nano, 2012,6(12):10759-10769. doi: 10.1021/nn304037d

    17. [17]

      Li E L, Yang F, Wu Z M, Wang Y, Ruan M B, Song P, Xing W, Xu W L. A Bifunctional Highly Efficient FeNx/C Electrocatalyst[J]. Small, 2018,14(8)1702827. doi: 10.1002/smll.201702827

    18. [18]

      Yang W X, Liu X J, Yue X Y, Jia J B, Guo S J. Bamboo-like Carbon Nanotube/Fe3C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction[J]. J. Am. Chem. Soc., 2015,137(4):1436-1439. doi: 10.1021/ja5129132

    19. [19]

      Zhao M Q, Zhang Q, Jia X L, Huang J Q, Zhang Y H, Wei F. Hierarchical Composites of Single/Double-Walled Carbon Nanotubes Interlinked Flakes from Direct Carbon Deposition on Layered Double Hydroxides[J]. Adv. Funct. Mater., 2010,20(4):677-685. doi: 10.1002/adfm.200901522

    20. [20]

      ZHANG T K. The Mechanism of Direct Preparation of Carbon Nanotubes by Fe/K - Catalyzed Pyrolysis of Coal. Taiyuan: Taiyuan University of Technology, 2020: 145

    21. [21]

      Wang C, Yun S N, Fan Q Y, Wang Z Q, Zhang Y L, Han F, Si Y M, Hagfeldt A. A hybrid Niobium-Based Oxide with Bio-Based Porous Carbon as an Efficient Electrocatalyst in Photovoltaics: A General Strategy for Understanding the Catalytic Mechanism[J]. J. Mater. Chem. A, 2019,7(24):14864-14875. doi: 10.1039/C9TA03540K

    22. [22]

      Dang J E, Yun S N, Zhang Y W, Yang J J, Liu Z L, Zhang Y W, Yang J J, Dang C W, Wang Y H, Deng Y Y. Constructing Double- Shell Structured N-C-in-Co/N-C Electrocatalysts with Nanorod- and Rhombic Dodecahedron - Shaped Hollow Morphologies to Boost Eelectrocatalytic Activity for Hydrogen Evolution and Triiodide Reduction Reaction[J]. Chem. Eng. J., 2022,449137854. doi: 10.1016/j.cej.2022.137854

    23. [23]

      DANG C W, ZHANG Y W, HAN F, DANG J E, LIU Z L, WANG Y H, DENG Y Y, YUN S N. Chemical Co-precipitation Preparation of ZnMoO4/Aloe - Derived Porous Carbon and Catalytic Performance[J]. Chinese J. Inrog. Chem., 2022,38(3):489-500.  

    24. [24]

      Zhang D, Li G S, Yu M J, Fan J M, Li B Y, Li L P. Facile Synthesis of Fe4N/Fe2O3/Fe/Porous N-Doped Carbon Nanosheet as High-Performance Anode for Lithium-Ion Batteries[J]. J. Power Sources, 2018,384:34-41. doi: 10.1016/j.jpowsour.2018.02.071

    25. [25]

      Hu X, Yuan M, Ma L L, Lu J Y, Li H C, Liu W J, Chen J J, Yu H Q. Iron-Nitrogen Doped Carbon with Exclusive Presence of FexN Active Sites as an Efficient ORR Electrocatalyst for Zn-Air Battery[J]. Appl. Catal. B-Environ., 2020,268118405. doi: 10.1016/j.apcatb.2019.118405

    26. [26]

      Li F, Han G F, Baek J B. Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure - Performance Relationship Discovery[J]. Acc. Chem. Res., 2022,55(1):110-120. doi: 10.1021/acs.accounts.1c00645

    27. [27]

      Wang W, Zuo X Q, Yang Q, Yang Q, Tang H B, Zhang H J, Li G. Constructing Fe/Fe3C Nanocrystals with Fe-Nx Sites in Fe-N-C Electrocatalyst to Achieve High Performance for Solar Cells[J]. Appl. Catal. B-Environ., 2022,300120726. doi: 10.1016/j.apcatb.2021.120726

    28. [28]

      Li L P, Zhang H Y, Pang J S, Lin J. Fabrication and Performance of Carbon Coated Copper Nanoparticles[J]. Mater. Sci.-Pol., 2010,28(1):181-187.

    29. [29]

      Tong M M, Sun F F, Xie Y, Wang Y, Yang Y Q, Tian C G, Wang L, Fu H G. Operando Cooperated Catalytic Mechanism of Atomically Dispersed Cu-N4 and Zn-N4 for Promoting Oxygen Reduction Reaction[J]. Angew. Chem. Int. Ed., 2021,60(25):14005-14012. doi: 10.1002/anie.202102053

    30. [30]

      Zhang Z P, Qin Y S, Dou M L, Ji J, Wang F. One-Step Conversion from Ni/Fe Polyphthalocyanine to N-Doped Carbon Supported Ni-Fe Nanoparticles for Highly Efficient Water Splitting[J]. Nano Energy, 2016,30:426-433. doi: 10.1016/j.nanoen.2016.10.035

    31. [31]

      Wang T, Xu M, Li F R, Li Y J, Chen W L. Multimetal-Based Nitrogen Doped Carbon Nanotubes Bifunctional Electrocatalysts for Triiodide Reduction and Water-Splitting Synthesized from Polyoxometalate-Intercalated Layered Double Hydroxide Pyrolysis Strategy[J]. Appl. Catal. B-Environ., 2021,280119421. doi: 10.1016/j.apcatb.2020.119421

    32. [32]

      Liu H, Zhang Y, Li R, Sun X L, Désilets S, Abou - Rachidhakima , Jaidann M, Lussier L. Structural and Morphological Control of Aligned Nitrogen-Doped Carbon Nanotubes[J]. Carbon, 2010,48(5):1498-1507. doi: 10.1016/j.carbon.2009.12.045

    33. [33]

      Yu L, Yi Q F, Yang X K, Zhou X L. One-Step Construction of Ni/Co- Doped C-N Nanotube Composites as Excellent Cathode Catalysts for Neutral Zinc-Air Battery[J]. Nano, 2019,14(3):43-57.

    34. [34]

      Deng Y Y, Yun S N, Dang J E, Zhang Y W, Dang C W, Wang Y H, Liu Z L, Gao Z. A Multi-dimensional Hierarchical Strategy Building Melamine Sponge-Derived Tetrapod Carbon Supported Cobalt-Nickel Tellurides 0D/3D Nanohybrids for Boosting Hydrogen Evolution and Triiodide Reduction Reaction[J]. J. Colloid Interface Sci., 2022,624:650-669. doi: 10.1016/j.jcis.2022.05.147

    35. [35]

      LIU Z L, LI J W, SUN M L, ZHANG Y W, DANG C W, YUN S N. Synthesis and Electrocatalytic Properties of MnWO4/Biomass- Derived Carbon Nanocomposite Catalyst[J]. Chinses J. Inrog. Chem., 2021,37(12):2219-2226. doi: 10.11862/CJIC.2021.247 

    36. [36]

      Wu J X, Tang A W, Huang S P, Li J M, Zeng L X, Wei M D. In Situ Confined Co5Ge3 Alloy Nanoparticles in Nitrogen - Doped Carbon Nanotubes for Boosting Lithium Storage[J]. ACS Appl. Mater. Interfaces, 2020,12(41):46247-46253. doi: 10.1021/acsami.0c15942

    37. [37]

      Wei L G, Chen W, Jia C Y, Yang X C, Yang Y L, Dong Y L, Liu L L, Song W N. Synthesis of CoNi Bimetallic Alloy Nanoparticles Wrapped in Nitrogen-Doped Graphite-like Carbon Shells and Their Electrocatalytic Activity When Used in a Counter Electrode for Dye- Sensitized Solar Cells[J]. J. Solid State Electrochem., 2019,23(5):1429-1442. doi: 10.1007/s10008-019-04227-3

    38. [38]

      Sun M L, Yun S N, Shi J, Zhang Y W, Arshad A, Dang J E, Zhang L S, Wang X, Liu Z L. Designing and Understanding the Outstanding Tri - iodide Reduction of N - Coordinated Magnetic Metal Modified Defect-Rich Carbon Dodecahedrons in Photovoltaics[J]. Small, 2021,17(41)2102300. doi: 10.1002/smll.202102300

    39. [39]

      Zafar N, Yun S N, Sun M L, Shi J, Arshad A, Zhang Y W, Wu Z B. Cobalt - Based Incorporated Metals in Metal - Organic Framework - Derived Nitrogen-Doped Carbon as a Robust Catalyst for Triiodide Reduction in Photovoltaics[J]. ACS Catal., 2021,11(21):13680-13695. doi: 10.1021/acscatal.1c04286

    40. [40]

      Li H, Xie Q, Li J S, Xie Z Z, Tang H L. Fe and N Co-doped Carbon with Three - Dimensional Ordered Macropores and Ordered Mesopores as an Efficient Tri - iodide Reduction Catalyst for Dye Sensitized Solar Cell[J]. J. Alloy. Compd., 2018,742:641-647. doi: 10.1016/j.jallcom.2018.01.376

    41. [41]

      Ahn S, Klein M, Manthiram A. 1D Co- and N-Doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri - iodide Reduction Reactions[J]. Adv. Energy Mater., 2017,7(7)1601979. doi: 10.1002/aenm.201601979

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(6)
  • Abstract views(1049)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return