Citation: Cui-Rong XIONG, Wei-Ning LI, Hao HU, Qiong CAI, Yan KONG. Preparation of Au/CoWO4/g-C3N4 Z-Scheme Heterojunction Photocatalyst with Efficient Photodegradation Activity[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2222-2230. doi: 10.11862/CJIC.2022.228 shu

Preparation of Au/CoWO4/g-C3N4 Z-Scheme Heterojunction Photocatalyst with Efficient Photodegradation Activity

  • Corresponding author: Yan KONG, kongy36@njtech.edu.cn
  • Received Date: 25 May 2022
    Revised Date: 8 September 2022

Figures(7)

  • The Z-scheme heterojunction photocatalyst Au/CoWO4/CNs (Au/CoNs-x, x=5, 10, 20, 50) was obtained by introducing Au into g-C3 N4 nanosheets (CNs) and CoWO4 composites via impregnation-calcination method. The introduction of Au could be a charge transport channel to accelerate the transfer of photogenerated electrons from CoWO 4 to CNs. Compared with CoWO 4/CNs, Au/CoNs-10 exhibited excellent photocatalytic activity for the degradation of methylene blue and tetracycline hydrochloride, and their apparent rate constants were improved from 0.289 and 0.360 h-1 to 0.499 and 0.637 h-1, respectively. Optical and electrical tests and free radical trapping experiments indicate that the significantly improved photocatalytic performance of Au/CoNs-10 is mainly due to the construction of Z-scheme heterojunction, which reduces the recombination rate of photogenerated electrons and holes, promotes high oxidation activity and accelerates the formation of hydroxyl radicals (·OH) and superoxide radicals (·O2-) with high oxidation ability.
  • 加载中
    1. [1]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8(1):76-80. doi: 10.1038/nmat2317

    2. [2]

      Lin W, Lu K C, Zhou S J, Wang J, Mu F H, Wang Y, Wu Y, Kong Y. Defects Remodeling of g-C3N4 Nanosheets by Fluorine-Containing Solvothermal Treatment to Enhance Their Photocatalytic Activities[J]. Appl. Surf. Sci., 2019,474:194-202. doi: 10.1016/j.apsusc.2018.03.140

    3. [3]

      Hu H, Kong W G, Wang J, Liu C X, Cai Q, Kong Y, Zhou S J, Yang Z B. Engineering 2D Compressed Layered g-C3N4 Nanosheets by the Intercalation of BiVO4-Bi2WO6 Composites for Boosting Photocatalytic Activities[J]. Appl. Surf. Sci., 2021,557149796. doi: 10.1016/j.apsusc.2021.149796

    4. [4]

      Zhao Y J, Liu Y, Wang Z Z, Ma Y R, Zhou Y J, Shi X F, Wu Q Y, Wang X, Shao M W, Huang H, Liu Y, Kang Z H. Carbon Nitride Assisted 2D Conductive Metal-Organic Frameworks Composite Photocatalyst for Efficient Visible Light-Driven H2O2 Production[J]. Appl. Catal. B-Environ., 2021,289120035. doi: 10.1016/j.apcatb.2021.120035

    5. [5]

      Rosli N I M, Lam S M, Sin J C, Mohamed A R. In Situ Acid Fabrication of g-C3N4 Photocatalyst with Improved Adsorptive and Photocatalytic Properties[J]. Mater. Lett., 2020,261126990. doi: 10.1016/j.matlet.2019.126990

    6. [6]

      Gao J T, Wang Y, Zhou S J, Lin W, Kong Y. A Facile One-Step Synthesis of Fe-Doped g-C3N4 Nanosheets and Their Improved Visible-Light Photocatalytic Performance[J]. ChemCatChem, 2017,9(9):1708-1715. doi: 10.1002/cctc.201700492

    7. [7]

      Jin X X, Wang R Y, Zhang L X, Si R, Shen M, Wang M, Tian J J, Shi J L. Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2020,59(17):6827-6831. doi: 10.1002/anie.201914565

    8. [8]

      Yi J J, Fei T, Li L, Yu Q, Zhang S, Song Y H, Lian J B, Zhu X L, Deng J J, Xu H, Li H M. Large-Scale Production of Ultrathin Carbon Nitride-Based Photocatalysts for High-Yield Hydrogen Evolution[J]. Appl. Catal. B-Environ., 2021,281119475. doi: 10.1016/j.apcatb.2020.119475

    9. [9]

      Shi Z, Zhang Y, Shen X F, Duoerkun G, Zhu B, Zhang L S, Li M Q, Chen Z G. Fabrication of g-C3N4/BiOBr Heterojunctions on Carbon Fibers as Weaveable Photocatalyst for Degrading Tetracycline Hydrochloride under Visible Light[J]. Chem. Eng. J., 2020,386124010. doi: 10.1016/j.cej.2020.124010

    10. [10]

      Yi X H, Ma S Q, Du X D, Zhao C, Fu H F, Wang P, Wang C C. The Facile Fabrication of 2D/3D Z-Scheme g-C3N4/UiO-66 Heterojunction with Enhanced Photocatalytic Cr(Ⅵ) Reduction Performance under White Light[J]. Chem. Eng. J., 2019,375121944. doi: 10.1016/j.cej.2019.121944

    11. [11]

      Jin C Y, Li Z L, Zhang Y, Wang M, Wu Z M, Xie Y H, Wang Y Z, Zhu T. The Construction of g-C3N4/Sm2+ Doped Bi2WO6 2D/2D Z-Scheme Heterojunction for Improved Visible-Light Excited Photocatalytic Efficiency[J]. Sep. Purif. Technol., 2019,224:33-43. doi: 10.1016/j.seppur.2019.05.006

    12. [12]

      Pan Z M, Zhang G G, Wang X C. Polymeric Carbon Nitride/RGO/Fe2O3: All Solid State Z-Scheme Systems for Photocatalytic Overall Water Splitting[J]. Angew. Chem. Int. Ed., 2019,58(21):7102-7106. doi: 10.1002/anie.201902634

    13. [13]

      Wang J, Lin W, Hu H, Liu C X, Cai Q, Zhou S J, Kong Y. Engineering Z-System Hybrids of 0D/2D F-TiO 2 Quantum Dots/g-C3N4 Heterostructures through Chemical Bonds with Enhanced Visible-Light Photocatalytic Performance[J]. New J. Chem., 2021,45(6):3067-3078. doi: 10.1039/D0NJ05500J

    14. [14]

      Xu C X, Wei X, Guo Y M, Wu H Q, Ren Z H, Xu G, Shen G, Han G R. Surfactant-Free Synthesis of Bi2WO6 Multilayered Disks with Visible-Light-Induced Photocatalytic Activity[J]. Mater. Res. Bull., 2009,44(8):1635-1641. doi: 10.1016/j.materresbull.2009.04.012

    15. [15]

      Zhang Y, Chai C, Zhang X C, Liu J X, Duan D H, Fan C M, Wang Y F. Construction of Pt-Decorated g-C3N4/Bi2WO6 Z-Scheme Composite with Superior Solar Photocatalytic Activity toward Rhodamine B Degradation[J]. Inorg. Chem. Commun., 2019,100:81-91. doi: 10.1016/j.inoche.2018.12.019

    16. [16]

      Mu F H, Cai Q, Hu H, Wang J, Wang Y, Zhou S J, Kong Y. Construction of 3D Hierarchical Microarchitectures of Z-Scheme UiO-66-(COOH)2/ZnIn2S4 Hybrid Decorated with Non-noble MoS2 Cocatalyst: A Highly Efficient Photocatalyst for Hydrogen Evolution and Cr Reduction[J]. Chem. Eng. J., 2020,384123352. doi: 10.1016/j.cej.2019.123352

    17. [17]

      Zhao X, Deng C Y, Meng D, Ji H W, Chen C C, Song W J, Zhao J C. Nickel-Coordinated Carbon Nitride as a Metallaphotoredox Platform for the Cross-Coupling of Aryl Halides with Alcohols[J]. ACS Catal., 2020,10(24):15178-15185. doi: 10.1021/acscatal.0c04725

    18. [18]

      Papailias I, Todorova N, Giannakopoulou T, Ioannidis N, Boukos N, Athanasekou C P, Dimotikali D, Trapalis C. Chemical vs Thermal Exfoliation of g-C3N4 for NOx Removal under Visible Light Irradiation[J]. Appl. Catal. B-Environ., 2018,239:16-26. doi: 10.1016/j.apcatb.2018.07.078

    19. [19]

      Jiang L S, Li J, Wang K, Zhang G K, Li Y, Wu X Y. Low Boiling Point Solvent Mediated Strategy to Synthesize Functionalized Monolayer Carbon Nitride for Superior Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B-Environ., 2020,260118181. doi: 10.1016/j.apcatb.2019.118181

    20. [20]

      Hong Y, Liu E L, Shi J Y, Lin X, Sheng L Z, Zhang M, Wang L Y, Chen J H. A Direct One-Step Synthesis of Ultrathin g-C3N4 Nanosheets from Thiourea for Boosting Solar Photocatalytic H2 Evolution[J]. Int. J. Hydrog. Energy, 2019,44(14):7194-7204. doi: 10.1016/j.ijhydene.2019.01.274

    21. [21]

      Zheng J H, Zhang L. Designing 3D Magnetic Peony Flower-like Cobalt Oxides/g-C3N 4 Dual Z-Scheme Photocatalyst for Remarkably Enhanced Sunlight Driven Photocatalytic Redox Activity[J]. Chem. Eng. J., 2019,369:947-956. doi: 10.1016/j.cej.2019.03.131

    22. [22]

      Xing P F, Zhao R X, Li X P, Gao X H. Preparation of CoWO4/g-C3N4 and Its Ultra-Deep Desulfurization Property[J]. Aust. J. Chem., 2017,70(3):271-279. doi: 10.1071/CH16320

    23. [23]

      Xu X W, Shen J F, Li N, Ye M X. Facile Synthesis of Reduced Graphene Oxide/CoWO4 Nanocomposites with Enhanced Electrochemical Performances for Supercapacitors[J]. Electrochim. Acta, 2014,150:23-34. doi: 10.1016/j.electacta.2014.10.139

    24. [24]

      Samanta S, Martha S, Parida K. Facile Synthesis of Au/g-C3N4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution under Visible-Light Irradiation[J]. ChemCatChem, 2014,6(5):1453-1462.

    25. [25]

      Caux M, Menard H, AlSalik Y M, Irvine J T S, Idriss H. Photo-Catalytic Hydrogen Production over Au/g-C3N4: Effect of Gold Particle Dispersion and Morphology[J]. Phys. Chem. Chem. Phys., 2019,21(29):15974-15987. doi: 10.1039/C9CP02241D

    26. [26]

      Prabavathi S L, Govindan K, Saravanakumar K, Jang A, Muthuraj V. Construction of Heterostructure CoWO4/g-C3N4 Nanocomposite as an Efficient Visible-Light Photocatalyst for Norfloxacin Degradation[J]. J. Ind. Eng. Chem., 2019,80:558-567. doi: 10.1016/j.jiec.2019.08.035

    27. [27]

      Tian N, Huang H W, He Y, Guo Y X, Zhang T R, Zhang Y H. Mediator-Free Direct Z-Scheme Photocatalytic System: BiVO4/g-C3N4 Organic-Inorganic Hybrid Photocatalyst with Highly Efficient Visible-Lght-Induced Photocatalytic Activity[J]. Dalton Trans., 2015,44(9):4297-4307. doi: 10.1039/C4DT03905J

    28. [28]

      Tu X M, Zhou R T, Guo H L, Tao W Y. Heterojunction Semiconductor g-C3N4/BiVO 4 with an Enhanced Photocatalytic Activity Based on the Effective Chemical Bonding[J]. Mater. Technol., 2019,34(14):827-837. doi: 10.1080/10667857.2019.1638637

    29. [29]

      Yang Y, Zeng Z T, Zeng G M, Huang D L, Xiao R, Zhang C, Zhou C Y, Xiong W P, Wang W J, Cheng M, Xue W J, Guo H, Tang X, He D H. Ti3C2 Mxene/Porous g-C3N4 Interfacial Schottky Junction for Boosting Spatial Charge Separation in Photocatalytic H2O2 Production[J]. Appl. Catal. B-Environ., 2019,258117956. doi: 10.1016/j.apcatb.2019.117956

    30. [30]

      Oliveros A N, Pimentel J A I, de Luna M D G, Garcia-Segura S, Abarca R R M, Doong R A. Visible-Light Photocatalytic Diclofenac Removal by Tunable Vanadium Pentoxide/Boron-Doped Graphitic Carbon Nitride Composite[J]. Chem. Eng. J., 2021,403126213. doi: 10.1016/j.cej.2020.126213

    31. [31]

      Tang G G, Zhang F X, Huo P W, Zulfiqarc S, Xu J, Yan Y S, Tang H. Constructing Novel Visible-Light-Driven Ternary Photocatalyst of AgBr Nanoparticles Decorated 2D/2D Heterojunction of g-C3N4/BiOBr Nanosheets with Remarkably Enhanced Photocatalytic Activity for Water-Treatment[J]. Ceram. Int., 2019,45(15):19197-19205. doi: 10.1016/j.ceramint.2019.06.167

    32. [32]

      Namini A S, Delbari S A, Mousavi M, Ghasemi J B. Synthesis and Characterization of Novel ZnO/NiCr2O4 Nanocomposite for Water Purification by Degradation of Tetracycline and Phenol under Visible Light Irradiation[J]. Mater. Res. Bull., 2021,139111247. doi: 10.1016/j.materresbull.2021.111247

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(7)
  • Abstract views(632)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return