Citation: Zi-Wei ZHOU, Zhi-Min HE, Kun GUO, Ke-Ke HUANG, Xing LU. Recent Advances in Intrinsic Defects of Carbon-Based Metal-Free Electrocatalysts[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2113-2126. doi: 10.11862/CJIC.2022.227 shu

Recent Advances in Intrinsic Defects of Carbon-Based Metal-Free Electrocatalysts

Figures(9)

  • Since the first discovery of nitrogen - doped carbon nanotubes with outstanding catalytic performance toward the oxygen reduction reaction, carbon-based metal-free materials hold great potential as promising alternatives to noble metal-based electrocatalysts prevailingly used in common energy technologies. In addition to the positive role of dopants, the ubiquitous intrinsic defects in the carbon skeleton are also important factors that affect the physical and chemical properties of carbon materials. Specifically, the carbon defects can induce localized charge and/or spin density redistribution and optimize the adsorption and/or desorption behaviors of key species, thereby improving the catalytic activity of adjoining carbon atoms. Rational design and creation of well-defined defects in carbon skeleton have recently become a crucial research frontier of carbon-based metal-free electrocatalysts. In this paper, we present an overview of recent advances in the intrinsic defects of carbon materials for electrocatalytic applications. Special focus is placed on three types of intrinsic defects, including edges, vacancies/holes, and topological defects. The fundamental features of these defects are first discussed, followed by summarizing the preparation and characterization methodology of such defects. According to both experimental and theoretical studies, the underlying correlations between the electronic structure and the electrocatalytic performance of these differentlyconfigured carbon defects are systematically elaborated. Finally, facing challenges and future perspectives on the intrinsic carbon defects for electrocatalysis are also provided.
  • 加载中
    1. [1]

      Debe M K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells[J]. Nature, 2012,486(7401):43-51. doi: 10.1038/nature11115

    2. [2]

      Wang Y J, Zhao N N, Fang B Z, Li H, Bi X T, Wang H J. Carbon- Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity[J]. Chem. Rev., 2015,115(9):3433-3467. doi: 10.1021/cr500519c

    3. [3]

      Banham D, Ye S Y. Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective[J]. ACS Energy Lett., 2017,2(3):629-638. doi: 10.1021/acsenergylett.6b00644

    4. [4]

      Liu Y L, Chen F J, Ye W, Zeng M, Han N, Zhao F P, Wang X X, Li Y G. High-Performance Oxygen Reduction Electrocatalyst Derived from Polydopamine and Cobalt Supported on Carbon Nanotubes for Metal-Air Batteries[J]. Adv. Funct. Mater., 2017,27(12)1606034. doi: 10.1002/adfm.201606034

    5. [5]

      Lee J S, Kim S T, Cao R G, Choi N S, Liu M L, Lee K T, Cho J. Metal-Air Batteries with High Energy Density: Li-Air Versus Zn-Air[J]. Adv. Energy Mater., 2011,1(1):34-50. doi: 10.1002/aenm.201000010

    6. [6]

      Xu Y, Kraft M, Xu R. Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting[J]. Chem. Soc. Rev., 2016,45(11):3039-3052. doi: 10.1039/C5CS00729A

    7. [7]

      Roberts F S, Kuhl K P, Nilsson A. High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts[J]. Angew. Chem. Int. Ed., 2015,54(17):5179-5182. doi: 10.1002/anie.201412214

    8. [8]

      Deng J, Iñiguez J A, Liu C. Electrocatalytic Nitrogen Reduction at Low Temperature[J]. Joule, 2018,2(5):846-856. doi: 10.1016/j.joule.2018.04.014

    9. [9]

      Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Improving the Hydrogen Oxidation Reaction Rate by Promotion of Hydroxyl Adsorption[J]. Nat. Chem., 2013,5(4):300-306. doi: 10.1038/nchem.1574

    10. [10]

      Han J R, Liu Z C, Ma Y J, Cui G W, Xie F Y, Wang F X, Wu Y P, Gao S Y, Xu Y H, Sun X P. Ambient N2 Fixation to NH3 at Ambient Conditions: Using Nb2O5 Nanofiber as a High-Performance Electro-catalyst[J]. Nano Energy, 2018,52:264-270. doi: 10.1016/j.nanoen.2018.07.045

    11. [11]

      Pu Z H, Amiinu I S, Kou Z K, Li W Q, Mu S C. RuP2-Based Catalysts with Platinum - like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values[J]. Angew. Chem. Int. Ed., 2017,56(38):11559-11564. doi: 10.1002/anie.201704911

    12. [12]

      Pi Y C, Shao Q, Wang P T, Lv F, Guo S J, Guo J, Huang X Q. Trime-tallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis[J]. Angew. Chem. Int. Ed., 2017,56(16):4502-4506. doi: 10.1002/anie.201701533

    13. [13]

      Xie C, Yan D F, Chen W, Zou Y Q, Chen R, Zang S Q, Wang Y Y, Yao X D, Wang S Y. Insight into the Design of Defect Electrocatalysts: From Electronic Structure to Adsorption Energy[J]. Mater. Today, 2019,31:47-68. doi: 10.1016/j.mattod.2019.05.021

    14. [14]

      Chen D W, Zou Y Q, Wang S Y. Surface Chemical-Functionalization of Ultrathin Two - Dimensional Nanomaterials for Electrocatalysis[J]. Mater. Today Energy, 2019,12:250-268. doi: 10.1016/j.mtener.2019.01.006

    15. [15]

      Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M=P, S) for Overall Water Splitting[J]. Adv. Funct. Mater., 2016,26(19):3314-3323. doi: 10.1002/adfm.201505626

    16. [16]

      Ali A, Shen P K. Nonprecious Metal's Graphene-Supported Electro-catalysts for Hydrogen Evolution Reaction: Fundamentals to Applications[J]. Carbon Energy, 2020,2(1):99-121. doi: 10.1002/cey2.26

    17. [17]

      Yan X C, Jia Y, Yao X D. Defects on Carbons for Electrocatalytic Oxygen Reduction[J]. Chem. Soc. Rev., 2018,47(20):7628-7658. doi: 10.1039/C7CS00690J

    18. [18]

      Dai L M, Xue Y H, Qu L T, Choi H J, Baek J B. Metal-Free Catalysts for Oxygen Reduction Reaction[J]. Chem. Rev., 2015,115(11):4823-4892. doi: 10.1021/cr5003563

    19. [19]

      Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049

    20. [20]

      Ai W, Luo Z M, Jiang J, Zhu J H, Du Z Z, Fan Z X, Xie L H, Zhang H, Huang W, Yu T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction[J]. Adv. Mater., 2014,26(35):6186-6192. doi: 10.1002/adma.201401427

    21. [21]

      Yan D F, Li Y X, Huo J, Chen R, Dai L M, Wang S Y. Defect Chemistry of Nonprecious - Metal Electrocatalysts for Oxygen Reactions[J]. Adv. Mater., 2017,29(48)1606459. doi: 10.1002/adma.201606459

    22. [22]

      Wang S D, Jiang H L, Song L. Recent Progress in Defective Carbon-Based Oxygen Electrode Materials for Rechargeable Zinc-Air Batteries[J]. Batter. Supercaps, 2019,2(6):509-523. doi: 10.1002/batt.201900001

    23. [23]

      Tang C, Zhang Q. Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects[J]. Adv. Mater., 2017,29(13)1604103. doi: 10.1002/adma.201604103

    24. [24]

      Deng X, Zhao B T, Zhu L, Shao Z P. Molten Salt Synthesis of Nitrogen-Doped Carbon with Hierarchical Pore Structures for Use as High-Performance Electrodes in Supercapacitors[J]. Carbon, 2015,93:48-58. doi: 10.1016/j.carbon.2015.05.031

    25. [25]

      Jia Y, Chen J, Yao X D. Defect Electrocatalytic Mechanism: Concept, Topological Structure and Perspective[J]. Mater. Chem. Front., 2018,2(7):1250-1268. doi: 10.1039/C8QM00070K

    26. [26]

      Banks C E, Davies T J, Wildgoose G G, Compton R G. Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge - Plane Sites and Tube Ends are the Reactive Sites[J]. Chem. Commun., 2005(7):829-841. doi: 10.1039/b413177k

    27. [27]

      Bellunato A, Tash H A, Cesa Y, Schneider G F. Chemistry at the Edge of Graphene[J]. ChemPhysChem, 2016,17(6):785-801. doi: 10.1002/cphc.201500926

    28. [28]

      Jiang D E, Sumpter B G, Dai S. Unique Chemical Reactivity of a Graphene Nanoribbon's Zigzag Edge[J]. J. Chem. Phys., 2007,126(13)134701. doi: 10.1063/1.2715558

    29. [29]

      Deng D H, Yu L, Pan X L, Wang S, Chen X Q, Hu P, Sun L X, Bao X H. Size Effect of Graphene on Electrocatalytic Activation of Oxygen[J]. Chem. Commun., 2011,47(36):10016-10018. doi: 10.1039/c1cc13033a

    30. [30]

      Jiang Y F, Yang L J, Sun T, Zhao J, Lyu Z Y, Zhuo O, Wang X Z, Wu Q, Ma J, Hu Z. Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity[J]. ACS Catal., 2015,5(11):6707-6712. doi: 10.1021/acscatal.5b01835

    31. [31]

      Shen A L, Zou Y Q, Wang Q, Dryfe R A W, Huang X B, Dou S, Dai L M, Wang S Y. Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge is More Active than the Basal Plane[J]. Angew. Chem. Int. Ed., 2014,53(40):10804-10808. doi: 10.1002/anie.201406695

    32. [32]

      Li Q Q, Zhang S, Dai L M, Li L S. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size - Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction[J]. J. Am. Chem. Soc., 2012,134(46):18932-18935. doi: 10.1021/ja309270h

    33. [33]

      Palaniselvam T, Valappil M O, Illathvalappil R, Kurungot S. Nano-porous Graphene by Quantum Dots Removal from Graphene and Its Conversion to a Potential Oxygen Reduction Electrocatalyst via Nitrogen Doping[J]. Energy Environ. Sci., 2014,7(3):1059-1067. doi: 10.1039/c3ee43648a

    34. [34]

      Fei H L, Ye R Q, Ye G L, Gong Y J, Peng Z W, Fan X J, Samuel E L G, Ajayan P M, Tour J M. Boron - and Nitrogen - Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electro- catalysts for Oxygen Reduction[J]. ACS Nano, 2014,8(10):10837-10843. doi: 10.1021/nn504637y

    35. [35]

      Jin H L, Huang H H, He Y H, Feng X, Wang S, Dai L M, Wang J C. Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction[J]. J. Am. Chem. Soc., 2015,137(24):7588-7591. doi: 10.1021/jacs.5b03799

    36. [36]

      Xue L F, Li Y C, Liu X F, Liu Q T, Shang J X, Duan H P, Dai L M, Shui J L. Zigzag Carbon as Efficient and Stable Oxygen Reduction Electrocatalyst for Proton Exchange Membrane Fuel Cells[J]. Nat. Commun., 2018,9(1)3819. doi: 10.1038/s41467-018-06279-x

    37. [37]

      Yang Q, Xiao Z C, Kong D B, Zhang T L, Duan X G, Zhou S K, Niu Y, Shen Y D, Sun H Q, Wang S B, Zhi L J. New Insight to the Role of Edges and Heteroatoms in Nanocarbons for Oxygen Reduction Reaction[J]. Nano Energy, 2019,66104096. doi: 10.1016/j.nanoen.2019.104096

    38. [38]

      Tao L, Wang Q, Dou S, Ma Z L, Huo J, Wang S Y, Dai L M. Edge-Rich and Dopant-Free Graphene as a Highly Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction[J]. Chem. Commun., 2016,52(13):2764-2767. doi: 10.1039/C5CC09173J

    39. [39]

      Dou S, Tao L, Wang R L, El Hankari S, Chen R, Wang S Y. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy[J]. Adv. Mater., 2018,30(21)1705850. doi: 10.1002/adma.201705850

    40. [40]

      Jia Y, Jiang K, Wang H T, Yao X D. The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion[J]. Chem, 2019,5(6):1371-1397. doi: 10.1016/j.chempr.2019.02.008

    41. [41]

      Du Y Q, Jiang C, Xia W, Song L, Li P, Gao B, Wu C, Sheng L, Ye J H, Wang T, He J P. Electrocatalytic Reduction of N2 and Nitrogen-Incorporation Process on Dopant - Free Defect Graphene[J]. J. Mater. Chem. A, 2020,8(1):55-61. doi: 10.1039/C9TA10071G

    42. [42]

      Wang X, Zhuang L Z, Jia Y, Liu H L, Yan X C, Zhang L Z, Yang D J, Zhu Z H, Yao X D. Plasma - Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation[J]. Angew. Chem. Int. Ed., 2018,57(50):16421-16425. doi: 10.1002/anie.201810199

    43. [43]

      Zhang J, Sun Y M, Zhu J W, Kou Z K, Hu P, Liu L, Li S Z, Mu S C, Huang Y H. Defect and Pyridinic Nitrogen Engineering of Carbon-Based Metal - Free Nanomaterial toward Oxygen Reduction[J]. Nano Energy, 2018,52:307-314. doi: 10.1016/j.nanoen.2018.08.003

    44. [44]

      Kluge R M, Haid R W, Stephens I E L, Calle-Vallejo F, Bandarenka A S. Monitoring the Active Sites for the Hydrogen Evolution Reaction at Model Carbon Surfaces[J]. Phys. Chem. Chem. Phys., 2021,23(16):10051-10058. doi: 10.1039/D1CP00434D

    45. [45]

      Pak A J, Paek E, Hwang G S. Tailoring the Performance of Graphene-Based Supercapacitors Using Topological Defects: A Theoretical Assessment[J]. Carbon, 2014,68:734-741. doi: 10.1016/j.carbon.2013.11.057

    46. [46]

      Allen M J, Tung V C, Kaner R B. Honeycomb Carbon: A Review of Graphene[J]. Chem. Rev., 2010,110(1):132-145. doi: 10.1021/cr900070d

    47. [47]

      Yazyev O V, Louie S G. Topological Defects in Graphene: Dislocations and Grain Boundaries[J]. Phys. Rev. B, 2010,81(19)195420. doi: 10.1103/PhysRevB.81.195420

    48. [48]

      Britto P J, Santhanam K S V, Rubio A, Alonso J A, Ajayan P M. Improved Charge Transfer at Carbon Nanotube Electrodes[J]. Adv. Mater., 1999,11(2):154-157. doi: 10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B

    49. [49]

      Lee S J, Kim H J, Lee J, Kuk Y, Chung K H, Kim H, Kahng S J. Donor and Acceptor - like Electronic States in a One - Dimensional Semiconductor[J]. Surf. Sci., 2006,600(22):4937-4940. doi: 10.1016/j.susc.2006.08.013

    50. [50]

      Chico L, Crespi V H, Benedict L X, Louie S G, Cohen M L. Pure Carbon Nanoscale Devices: Nanotube Heterojunctions[J]. Phys. Rev. Lett., 1996,76(6):971-974. doi: 10.1103/PhysRevLett.76.971

    51. [51]

      Crespi V H, Cohen M L, Rubio A. In Situ Band Gap Engineering of Carbon Nanotubes[J]. Phys. Rev. Lett., 1997,79(11):2093-2096. doi: 10.1103/PhysRevLett.79.2093

    52. [52]

      Zhao H Y, Sun C H, Jin Z, Wang D W, Yan X C, Chen Z G, Zhu G S, Yao X D. Carbon for the Oxygen Reduction Reaction: A Defect Mechanism[J]. J. Mater. Chem. A, 2015,3(22):11736-11739. doi: 10.1039/C5TA02229K

    53. [53]

      Zhang L P, Xu Q, Niu J B, Xia Z H. Role of Lattice Defects in Catalytic Activities of Graphene Clusters for Fuel Cells[J]. Phys. Chem. Chem. Phys., 2015,17(26):16733-16743. doi: 10.1039/C5CP02014J

    54. [54]

      Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B S, Zhang Q, Titirici M M, Wei F. Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis[J]. Adv. Mater., 2016,28(32):6845-6851. doi: 10.1002/adma.201601406

    55. [55]

      He Z M, Wei P, Xu T, Han J T, Gao X J, Lu X. Defect-Rich N/S- Co-doped Porous Hollow Carbon Nanospheres Derived from Fullerenes as Efficient Electrocatalysts for the Oxygen - Reduction Reaction and Zn - Air Batteries[J]. Mater. Chem. Front., 2021,5(21):7873-7882. doi: 10.1039/D1QM00854D

    56. [56]

      Wu Q L, Gao J, Feng J R, Liu Q, Zhou Y J, Zhang S B, Nie M X, Liu Y, Zhao J P, Liu F C, Zhong J, Kang Z H. A CO2 Adsorption Dominated Carbon Defect - Based Electrocatalyst for Efficient Carbon Dioxide Reduction[J]. J. Mater. Chem. A, 2020,8(3):1205-1211. doi: 10.1039/C9TA11473D

    57. [57]

      Jiang S J, Li Z, Wang H Y, Wang Y, Meng L N, Song S Q. Tuning Nondoped Carbon Nanotubes to an Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction by Localizing the Orbital of the Nanotubes with Topological Defects[J]. Nanoscale, 2014,6(23):14262-14269. doi: 10.1039/C4NR04658G

    58. [58]

      Zhu J W, Huang Y P, Mei W C, Zhao C Y, Zhang C T, Zhang J, Amiinu I S, Mu S C. Effects of Intrinsic Pentagon Defects on Electro-chemical Reactivity of Carbon Nanomaterials[J]. Angew. Chem. Int. Ed., 2019,58(12):3859-3864. doi: 10.1002/anie.201813805

    59. [59]

      Zheng S S, Ju H, Lu X. A High-Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures[J]. Adv. Energy Mater., 2015,5(22)1500871. doi: 10.1002/aenm.201500871

    60. [60]

      He Z M, Wei P, Chen N, Han J T, Lu X. N, S - Co - doped Porous Carbon Nanofiber Films Derived from Fullerenes (C60) as Efficient Electrocatalysts for Oxygen Reduction and a Zn-Air Battery[J]. Chem. Eur. J., 2021,27(4):1423-1429. doi: 10.1002/chem.202004535

    61. [61]

      Xu T, Yu D Y, Du Z L, Huang W H, Lu X. Two-Dimensional Mesoporous Carbon Materials Derived from Fullerene Microsheets for Energy Applications[J]. Chem. Eur. J., 2020,26(47):10811-10816. doi: 10.1002/chem.202001404

    62. [62]

      He Z M, Guo Z Q, Guo K, Akasaka T, Lu X. Compositing Fullerene- Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance[J]. C-Journal of Carbon Research, 2022,8(1)13. doi: 10.3390/c8010013

    63. [63]

      He Z M, Wei P, Xu T, Guo Z Q, Han J T, Akasaka T, Guo K, Lu X. Defective Porous Carbon Microrods Derived from Fullerenes (C70) as High-Performance Electrocatalysts for the Oxygen Reduction Reaction[J]. Nanoscale, 2022,14(2):473-481. doi: 10.1039/D1NR07198J

    64. [64]

      Yan X C, Jia Y, Odedairo T, Zhao X J, Jin Z, Zhu Z H, Yao X D. Activated Carbon Becomes Active for Oxygen Reduction and Hydrogen Evolution Reactions[J]. Chem. Commun., 2016,52(52):8156-8159. doi: 10.1039/C6CC03687B

    65. [65]

      Zhang M L, Choi C, Huo R P, Gu G H, Hong S, Yan C, Xu S Y, Robertson A W, Qiu J S, Jung Y S, Sun Z Y. Reduced Graphene Oxides with Engineered Defects Enable Efficient Electrochemical Reduction of Dinitrogen to Ammonia in Wide pH Range[J]. Nano Energy, 2020,68104323. doi: 10.1016/j.nanoen.2019.104323

    66. [66]

      Jia Y, Zhang L Z, Du A J, Gao G P, Chen J, Yan X C, Brown C L, Yao X D. Defect Graphene as a Trifunctional Catalyst for Electro-chemical Reactions[J]. Adv. Mater., 2016,28(43):9532-9538. doi: 10.1002/adma.201602912

    67. [67]

      Jia Y, Zhang L Z, Zhuang L Z, Liu H L, Yan X C, Wang X, Liu J D, Wang J C, Zheng Y R, Xiao Z H, Taran E, Chen J, Yang D J, Zhu Z H, Wang S Y, Dai L M, Yao X D. Identification of Active Sites for Acidic Oxygen Reduction on Carbon Catalysts with and without Nitrogen Doping[J]. Nat. Catal., 2019,2(8):688-695. doi: 10.1038/s41929-019-0297-4

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(59)
  • Abstract views(1648)
  • HTML views(440)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return