Recent Advances in Intrinsic Defects of Carbon-Based Metal-Free Electrocatalysts
- Corresponding author: Kun GUO, guok@hust.edu.cn Ke-Ke HUANG, kkhuang@jlu.edu.cn Xing LU, lux@hust.edu.cn
Citation: Zi-Wei ZHOU, Zhi-Min HE, Kun GUO, Ke-Ke HUANG, Xing LU. Recent Advances in Intrinsic Defects of Carbon-Based Metal-Free Electrocatalysts[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2113-2126. doi: 10.11862/CJIC.2022.227
Debe M K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells[J]. Nature, 2012,486(7401):43-51. doi: 10.1038/nature11115
Wang Y J, Zhao N N, Fang B Z, Li H, Bi X T, Wang H J. Carbon- Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity[J]. Chem. Rev., 2015,115(9):3433-3467. doi: 10.1021/cr500519c
Banham D, Ye S Y. Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective[J]. ACS Energy Lett., 2017,2(3):629-638. doi: 10.1021/acsenergylett.6b00644
Liu Y L, Chen F J, Ye W, Zeng M, Han N, Zhao F P, Wang X X, Li Y G. High-Performance Oxygen Reduction Electrocatalyst Derived from Polydopamine and Cobalt Supported on Carbon Nanotubes for Metal-Air Batteries[J]. Adv. Funct. Mater., 2017,27(12)1606034. doi: 10.1002/adfm.201606034
Lee J S, Kim S T, Cao R G, Choi N S, Liu M L, Lee K T, Cho J. Metal-Air Batteries with High Energy Density: Li-Air Versus Zn-Air[J]. Adv. Energy Mater., 2011,1(1):34-50. doi: 10.1002/aenm.201000010
Xu Y, Kraft M, Xu R. Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting[J]. Chem. Soc. Rev., 2016,45(11):3039-3052. doi: 10.1039/C5CS00729A
Roberts F S, Kuhl K P, Nilsson A. High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts[J]. Angew. Chem. Int. Ed., 2015,54(17):5179-5182. doi: 10.1002/anie.201412214
Deng J, Iñiguez J A, Liu C. Electrocatalytic Nitrogen Reduction at Low Temperature[J]. Joule, 2018,2(5):846-856. doi: 10.1016/j.joule.2018.04.014
Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Improving the Hydrogen Oxidation Reaction Rate by Promotion of Hydroxyl Adsorption[J]. Nat. Chem., 2013,5(4):300-306. doi: 10.1038/nchem.1574
Han J R, Liu Z C, Ma Y J, Cui G W, Xie F Y, Wang F X, Wu Y P, Gao S Y, Xu Y H, Sun X P. Ambient N2 Fixation to NH3 at Ambient Conditions: Using Nb2O5 Nanofiber as a High-Performance Electro-catalyst[J]. Nano Energy, 2018,52:264-270. doi: 10.1016/j.nanoen.2018.07.045
Pu Z H, Amiinu I S, Kou Z K, Li W Q, Mu S C. RuP2-Based Catalysts with Platinum - like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values[J]. Angew. Chem. Int. Ed., 2017,56(38):11559-11564. doi: 10.1002/anie.201704911
Pi Y C, Shao Q, Wang P T, Lv F, Guo S J, Guo J, Huang X Q. Trime-tallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis[J]. Angew. Chem. Int. Ed., 2017,56(16):4502-4506. doi: 10.1002/anie.201701533
Xie C, Yan D F, Chen W, Zou Y Q, Chen R, Zang S Q, Wang Y Y, Yao X D, Wang S Y. Insight into the Design of Defect Electrocatalysts: From Electronic Structure to Adsorption Energy[J]. Mater. Today, 2019,31:47-68. doi: 10.1016/j.mattod.2019.05.021
Chen D W, Zou Y Q, Wang S Y. Surface Chemical-Functionalization of Ultrathin Two - Dimensional Nanomaterials for Electrocatalysis[J]. Mater. Today Energy, 2019,12:250-268. doi: 10.1016/j.mtener.2019.01.006
Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M=P, S) for Overall Water Splitting[J]. Adv. Funct. Mater., 2016,26(19):3314-3323. doi: 10.1002/adfm.201505626
Ali A, Shen P K. Nonprecious Metal's Graphene-Supported Electro-catalysts for Hydrogen Evolution Reaction: Fundamentals to Applications[J]. Carbon Energy, 2020,2(1):99-121. doi: 10.1002/cey2.26
Yan X C, Jia Y, Yao X D. Defects on Carbons for Electrocatalytic Oxygen Reduction[J]. Chem. Soc. Rev., 2018,47(20):7628-7658. doi: 10.1039/C7CS00690J
Dai L M, Xue Y H, Qu L T, Choi H J, Baek J B. Metal-Free Catalysts for Oxygen Reduction Reaction[J]. Chem. Rev., 2015,115(11):4823-4892. doi: 10.1021/cr5003563
Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049
Ai W, Luo Z M, Jiang J, Zhu J H, Du Z Z, Fan Z X, Xie L H, Zhang H, Huang W, Yu T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction[J]. Adv. Mater., 2014,26(35):6186-6192. doi: 10.1002/adma.201401427
Yan D F, Li Y X, Huo J, Chen R, Dai L M, Wang S Y. Defect Chemistry of Nonprecious - Metal Electrocatalysts for Oxygen Reactions[J]. Adv. Mater., 2017,29(48)1606459. doi: 10.1002/adma.201606459
Wang S D, Jiang H L, Song L. Recent Progress in Defective Carbon-Based Oxygen Electrode Materials for Rechargeable Zinc-Air Batteries[J]. Batter. Supercaps, 2019,2(6):509-523. doi: 10.1002/batt.201900001
Tang C, Zhang Q. Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects[J]. Adv. Mater., 2017,29(13)1604103. doi: 10.1002/adma.201604103
Deng X, Zhao B T, Zhu L, Shao Z P. Molten Salt Synthesis of Nitrogen-Doped Carbon with Hierarchical Pore Structures for Use as High-Performance Electrodes in Supercapacitors[J]. Carbon, 2015,93:48-58. doi: 10.1016/j.carbon.2015.05.031
Jia Y, Chen J, Yao X D. Defect Electrocatalytic Mechanism: Concept, Topological Structure and Perspective[J]. Mater. Chem. Front., 2018,2(7):1250-1268. doi: 10.1039/C8QM00070K
Banks C E, Davies T J, Wildgoose G G, Compton R G. Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge - Plane Sites and Tube Ends are the Reactive Sites[J]. Chem. Commun., 2005(7):829-841. doi: 10.1039/b413177k
Bellunato A, Tash H A, Cesa Y, Schneider G F. Chemistry at the Edge of Graphene[J]. ChemPhysChem, 2016,17(6):785-801. doi: 10.1002/cphc.201500926
Jiang D E, Sumpter B G, Dai S. Unique Chemical Reactivity of a Graphene Nanoribbon's Zigzag Edge[J]. J. Chem. Phys., 2007,126(13)134701. doi: 10.1063/1.2715558
Deng D H, Yu L, Pan X L, Wang S, Chen X Q, Hu P, Sun L X, Bao X H. Size Effect of Graphene on Electrocatalytic Activation of Oxygen[J]. Chem. Commun., 2011,47(36):10016-10018. doi: 10.1039/c1cc13033a
Jiang Y F, Yang L J, Sun T, Zhao J, Lyu Z Y, Zhuo O, Wang X Z, Wu Q, Ma J, Hu Z. Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity[J]. ACS Catal., 2015,5(11):6707-6712. doi: 10.1021/acscatal.5b01835
Shen A L, Zou Y Q, Wang Q, Dryfe R A W, Huang X B, Dou S, Dai L M, Wang S Y. Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge is More Active than the Basal Plane[J]. Angew. Chem. Int. Ed., 2014,53(40):10804-10808. doi: 10.1002/anie.201406695
Li Q Q, Zhang S, Dai L M, Li L S. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size - Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction[J]. J. Am. Chem. Soc., 2012,134(46):18932-18935. doi: 10.1021/ja309270h
Palaniselvam T, Valappil M O, Illathvalappil R, Kurungot S. Nano-porous Graphene by Quantum Dots Removal from Graphene and Its Conversion to a Potential Oxygen Reduction Electrocatalyst via Nitrogen Doping[J]. Energy Environ. Sci., 2014,7(3):1059-1067. doi: 10.1039/c3ee43648a
Fei H L, Ye R Q, Ye G L, Gong Y J, Peng Z W, Fan X J, Samuel E L G, Ajayan P M, Tour J M. Boron - and Nitrogen - Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electro- catalysts for Oxygen Reduction[J]. ACS Nano, 2014,8(10):10837-10843. doi: 10.1021/nn504637y
Jin H L, Huang H H, He Y H, Feng X, Wang S, Dai L M, Wang J C. Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction[J]. J. Am. Chem. Soc., 2015,137(24):7588-7591. doi: 10.1021/jacs.5b03799
Xue L F, Li Y C, Liu X F, Liu Q T, Shang J X, Duan H P, Dai L M, Shui J L. Zigzag Carbon as Efficient and Stable Oxygen Reduction Electrocatalyst for Proton Exchange Membrane Fuel Cells[J]. Nat. Commun., 2018,9(1)3819. doi: 10.1038/s41467-018-06279-x
Yang Q, Xiao Z C, Kong D B, Zhang T L, Duan X G, Zhou S K, Niu Y, Shen Y D, Sun H Q, Wang S B, Zhi L J. New Insight to the Role of Edges and Heteroatoms in Nanocarbons for Oxygen Reduction Reaction[J]. Nano Energy, 2019,66104096. doi: 10.1016/j.nanoen.2019.104096
Tao L, Wang Q, Dou S, Ma Z L, Huo J, Wang S Y, Dai L M. Edge-Rich and Dopant-Free Graphene as a Highly Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction[J]. Chem. Commun., 2016,52(13):2764-2767. doi: 10.1039/C5CC09173J
Dou S, Tao L, Wang R L, El Hankari S, Chen R, Wang S Y. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy[J]. Adv. Mater., 2018,30(21)1705850. doi: 10.1002/adma.201705850
Jia Y, Jiang K, Wang H T, Yao X D. The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion[J]. Chem, 2019,5(6):1371-1397. doi: 10.1016/j.chempr.2019.02.008
Du Y Q, Jiang C, Xia W, Song L, Li P, Gao B, Wu C, Sheng L, Ye J H, Wang T, He J P. Electrocatalytic Reduction of N2 and Nitrogen-Incorporation Process on Dopant - Free Defect Graphene[J]. J. Mater. Chem. A, 2020,8(1):55-61. doi: 10.1039/C9TA10071G
Wang X, Zhuang L Z, Jia Y, Liu H L, Yan X C, Zhang L Z, Yang D J, Zhu Z H, Yao X D. Plasma - Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation[J]. Angew. Chem. Int. Ed., 2018,57(50):16421-16425. doi: 10.1002/anie.201810199
Zhang J, Sun Y M, Zhu J W, Kou Z K, Hu P, Liu L, Li S Z, Mu S C, Huang Y H. Defect and Pyridinic Nitrogen Engineering of Carbon-Based Metal - Free Nanomaterial toward Oxygen Reduction[J]. Nano Energy, 2018,52:307-314. doi: 10.1016/j.nanoen.2018.08.003
Kluge R M, Haid R W, Stephens I E L, Calle-Vallejo F, Bandarenka A S. Monitoring the Active Sites for the Hydrogen Evolution Reaction at Model Carbon Surfaces[J]. Phys. Chem. Chem. Phys., 2021,23(16):10051-10058. doi: 10.1039/D1CP00434D
Pak A J, Paek E, Hwang G S. Tailoring the Performance of Graphene-Based Supercapacitors Using Topological Defects: A Theoretical Assessment[J]. Carbon, 2014,68:734-741. doi: 10.1016/j.carbon.2013.11.057
Allen M J, Tung V C, Kaner R B. Honeycomb Carbon: A Review of Graphene[J]. Chem. Rev., 2010,110(1):132-145. doi: 10.1021/cr900070d
Yazyev O V, Louie S G. Topological Defects in Graphene: Dislocations and Grain Boundaries[J]. Phys. Rev. B, 2010,81(19)195420. doi: 10.1103/PhysRevB.81.195420
Britto P J, Santhanam K S V, Rubio A, Alonso J A, Ajayan P M. Improved Charge Transfer at Carbon Nanotube Electrodes[J]. Adv. Mater., 1999,11(2):154-157. doi: 10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
Lee S J, Kim H J, Lee J, Kuk Y, Chung K H, Kim H, Kahng S J. Donor and Acceptor - like Electronic States in a One - Dimensional Semiconductor[J]. Surf. Sci., 2006,600(22):4937-4940. doi: 10.1016/j.susc.2006.08.013
Chico L, Crespi V H, Benedict L X, Louie S G, Cohen M L. Pure Carbon Nanoscale Devices: Nanotube Heterojunctions[J]. Phys. Rev. Lett., 1996,76(6):971-974. doi: 10.1103/PhysRevLett.76.971
Crespi V H, Cohen M L, Rubio A. In Situ Band Gap Engineering of Carbon Nanotubes[J]. Phys. Rev. Lett., 1997,79(11):2093-2096. doi: 10.1103/PhysRevLett.79.2093
Zhao H Y, Sun C H, Jin Z, Wang D W, Yan X C, Chen Z G, Zhu G S, Yao X D. Carbon for the Oxygen Reduction Reaction: A Defect Mechanism[J]. J. Mater. Chem. A, 2015,3(22):11736-11739. doi: 10.1039/C5TA02229K
Zhang L P, Xu Q, Niu J B, Xia Z H. Role of Lattice Defects in Catalytic Activities of Graphene Clusters for Fuel Cells[J]. Phys. Chem. Chem. Phys., 2015,17(26):16733-16743. doi: 10.1039/C5CP02014J
Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B S, Zhang Q, Titirici M M, Wei F. Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis[J]. Adv. Mater., 2016,28(32):6845-6851. doi: 10.1002/adma.201601406
He Z M, Wei P, Xu T, Han J T, Gao X J, Lu X. Defect-Rich N/S- Co-doped Porous Hollow Carbon Nanospheres Derived from Fullerenes as Efficient Electrocatalysts for the Oxygen - Reduction Reaction and Zn - Air Batteries[J]. Mater. Chem. Front., 2021,5(21):7873-7882. doi: 10.1039/D1QM00854D
Wu Q L, Gao J, Feng J R, Liu Q, Zhou Y J, Zhang S B, Nie M X, Liu Y, Zhao J P, Liu F C, Zhong J, Kang Z H. A CO2 Adsorption Dominated Carbon Defect - Based Electrocatalyst for Efficient Carbon Dioxide Reduction[J]. J. Mater. Chem. A, 2020,8(3):1205-1211. doi: 10.1039/C9TA11473D
Jiang S J, Li Z, Wang H Y, Wang Y, Meng L N, Song S Q. Tuning Nondoped Carbon Nanotubes to an Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction by Localizing the Orbital of the Nanotubes with Topological Defects[J]. Nanoscale, 2014,6(23):14262-14269. doi: 10.1039/C4NR04658G
Zhu J W, Huang Y P, Mei W C, Zhao C Y, Zhang C T, Zhang J, Amiinu I S, Mu S C. Effects of Intrinsic Pentagon Defects on Electro-chemical Reactivity of Carbon Nanomaterials[J]. Angew. Chem. Int. Ed., 2019,58(12):3859-3864. doi: 10.1002/anie.201813805
Zheng S S, Ju H, Lu X. A High-Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures[J]. Adv. Energy Mater., 2015,5(22)1500871. doi: 10.1002/aenm.201500871
He Z M, Wei P, Chen N, Han J T, Lu X. N, S - Co - doped Porous Carbon Nanofiber Films Derived from Fullerenes (C60) as Efficient Electrocatalysts for Oxygen Reduction and a Zn-Air Battery[J]. Chem. Eur. J., 2021,27(4):1423-1429. doi: 10.1002/chem.202004535
Xu T, Yu D Y, Du Z L, Huang W H, Lu X. Two-Dimensional Mesoporous Carbon Materials Derived from Fullerene Microsheets for Energy Applications[J]. Chem. Eur. J., 2020,26(47):10811-10816. doi: 10.1002/chem.202001404
He Z M, Guo Z Q, Guo K, Akasaka T, Lu X. Compositing Fullerene- Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance[J]. C-Journal of Carbon Research, 2022,8(1)13. doi: 10.3390/c8010013
He Z M, Wei P, Xu T, Guo Z Q, Han J T, Akasaka T, Guo K, Lu X. Defective Porous Carbon Microrods Derived from Fullerenes (C70) as High-Performance Electrocatalysts for the Oxygen Reduction Reaction[J]. Nanoscale, 2022,14(2):473-481. doi: 10.1039/D1NR07198J
Yan X C, Jia Y, Odedairo T, Zhao X J, Jin Z, Zhu Z H, Yao X D. Activated Carbon Becomes Active for Oxygen Reduction and Hydrogen Evolution Reactions[J]. Chem. Commun., 2016,52(52):8156-8159. doi: 10.1039/C6CC03687B
Zhang M L, Choi C, Huo R P, Gu G H, Hong S, Yan C, Xu S Y, Robertson A W, Qiu J S, Jung Y S, Sun Z Y. Reduced Graphene Oxides with Engineered Defects Enable Efficient Electrochemical Reduction of Dinitrogen to Ammonia in Wide pH Range[J]. Nano Energy, 2020,68104323. doi: 10.1016/j.nanoen.2019.104323
Jia Y, Zhang L Z, Du A J, Gao G P, Chen J, Yan X C, Brown C L, Yao X D. Defect Graphene as a Trifunctional Catalyst for Electro-chemical Reactions[J]. Adv. Mater., 2016,28(43):9532-9538. doi: 10.1002/adma.201602912
Jia Y, Zhang L Z, Zhuang L Z, Liu H L, Yan X C, Wang X, Liu J D, Wang J C, Zheng Y R, Xiao Z H, Taran E, Chen J, Yang D J, Zhu Z H, Wang S Y, Dai L M, Yao X D. Identification of Active Sites for Acidic Oxygen Reduction on Carbon Catalysts with and without Nitrogen Doping[J]. Nat. Catal., 2019,2(8):688-695. doi: 10.1038/s41929-019-0297-4
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007