Citation: Fen-Fang LI, Jing HE. Synthesis, Structural and Magnetic Characterization of Fe(Ⅱ)/Co(Ⅱ)Isomorphous Complexes Based on a Dipyrazole-Containing Tetracarboxylate Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2259-2266. doi: 10.11862/CJIC.2022.226 shu

Synthesis, Structural and Magnetic Characterization of Fe(Ⅱ)/Co(Ⅱ)Isomorphous Complexes Based on a Dipyrazole-Containing Tetracarboxylate Ligand

  • Corresponding author: Fen-Fang LI, lffspring@126.com
  • Received Date: 14 March 2022
    Revised Date: 16 September 2022

Figures(7)

  • We herein report the synthetic, structural, and magnetic studies on two 2D isomorphous complexes, {(NH2(CH3)2)2[M(L)]}n (M=Fe (1), Co (2), H4L=1, 1'-(1, 4-phenylenebis(methylene))bis(1H-pyrazole -3, 5-dicarboxylic acid)). From single crystal X-ray crystallography, it is found that the complexes crystallized in the same space group monoclinic P21 / n and have six - coordinate octahedron structures. The framework features anionic having a -2 charge, and the electroneutrality is achieved by the incorporation of the protonated dimethylamine by hydrolysis of DMF in the voids of the net. In the two polymers, each ligand bridges two metal(Ⅱ) ions through cheating N, O atoms of the pyrazole ring and monodentate O atoms of the same pyrazole ring, forming ⋯M-L-M-L⋯ chains and the 1D chains intersect to form an infinite 2D network which contains nearly square M4L4 units. Magnetic susceptibility measurements indicate the presence of antiferromagnetic properties in complexes 1 and 2.
  • 加载中
    1. [1]

      Gándara F, Furukawa H, Lee S, Yaghi O M. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2014,136(14):5271-5274. doi: 10.1021/ja501606h

    2. [2]

      Meng H, Zhao C, Nie M, Wang C R, Wang T S. Optically Controlled Molecular Metallofullerene Magnetism via an Azobenzene-Functionalized Metal-Organic Framework[J]. ACS Appl. Mater. Interfaces, 2018,10(38):32607-32612. doi: 10.1021/acsami.8b11098

    3. [3]

      Zorlu Y, Erbahar D, Çetinkaya A, Bulut A, Erkal T S, Yazaydin A O, Beckmann J, Yücesan G. A Cobalt Arylphosphonate MOF-superior Stability, Sorption and Magnetism[J]. Chem. Commun., 2019,55:3053-3056. doi: 10.1039/C8CC09655D

    4. [4]

      Lv X L, Yuan S, Xie L H, Darke H F, Chen Y, He T, Dong C, Wang B, Zhang Y Z, Li J R, Zhou H C. Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2019,141(26):10283-10293. doi: 10.1021/jacs.9b02947

    5. [5]

      Wu Y P, Tian J W, Liu S B, Li B, Zhao J, Ma L F, Li D S, Lan Y Q, Bu X H. Bi-microporous Metal-Organic Frameworks with Cubane[M4(OH)4] (M=Ni, Co) Clusters and Pore-Space Partition for Electrocatalytic Methanol Oxidation Reaction[J]. Angew. Chem. Int. Ed., 2019,58:12185-12189. doi: 10.1002/anie.201907136

    6. [6]

      Wang P L, Xie L H, Joseph E A, Li J R, Su X O, Zhou H C. Metal-Organic Frameworks for Food Safety[J]. Chem. Rev., 2019,119(18):10638-10690. doi: 10.1021/acs.chemrev.9b00257

    7. [7]

      Zhu L, Liu X Q, Jiang H L, Sun L B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis[J]. Chem. Rev., 2017,117(12):8129-8176. doi: 10.1021/acs.chemrev.7b00091

    8. [8]

      Liang J, Huang Y B, Cao R. Metal-Organic Frameworks and Porous Organic Polymers for Sustainable Fixation of Carbon Dioxide into Cyclic Carbonates[J]. Coord. Chem. Rev., 2019,378(1):32-65.

    9. [9]

      Miller J S, Gatteschi D. Molecule-Based Magnets[J]. Chem. Soc. Rev., 2011,40:3065-3066. doi: 10.1039/c1cs90019f

    10. [10]

      Yu H Y, Xu L, Wang D, Wei Q, Pan J, Xue Z Z, Ma Z L. Synthesis, Crystal Structure and Magnetic Property of a 3D Cu-Organic Framework[J]. Inorg. Chem. Commun., 2020,112107713. doi: 10.1016/j.inoche.2019.107713

    11. [11]

      Pachfule P, Das R, Poddar P, Banerjee R. Structural, Magnetic, and Gas Adsorption Study of a Series of Partially Fluorinated Metal-Organic Frameworks (HF-MOFs)[J]. Inorg. Chem., 2011,50(9):3855-3865. doi: 10.1021/ic1017246

    12. [12]

      Mukherjee S, Samanta D, Mukherjee P S. New Structural Topologies in a Series of 3d Metal Complexes with Isomeric Phenylenediacetates and 1, 3, 5-Tris(1-imidazolyl)benzene Ligand: Syntheses, Structures, and Magnetic and Luminescence Properties[J]. Cryst. Growth Des., 2013,13(12):5335-5343. doi: 10.1021/cg4011967

    13. [13]

      Zhao Y, Chang X H, Liu G Z, Ma L F, Wang L Y. Five Mn(Ⅱ) Coordination Polymers Based on 2, 3, 5, 5-Biphenyl Tetracarboxylic Acid: Syntheses, Structures, and Magnetic Properties[J]. Cryst. Growth Des., 2015,15(2):966-974. doi: 10.1021/cg501768f

    14. [14]

      Yue Q, Gao E Q. Azide and Carboxylate as Simultaneous Coupler for Magnetic Coordination Polymers[J]. Coord. Chem. Rev., 2019,382:1-31. doi: 10.1016/j.ccr.2018.12.002

    15. [15]

      Cui Y J, Zhang J, He H J, Qian G D. Photonic Functional Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2018,47:5740-5785. doi: 10.1039/C7CS00879A

    16. [16]

      Gusev A, Nemec I, Herchel R, Shul'gin V, Ryush I, Kiskin M, Efimov N, Ugolkova E, Minin V, Lyssenko K, Eremenko I, Linert W. Copper(Ⅱ) Self-Assembled Clusters of Bis((pyridin-2-yl)-1, 2, 4-triazol-3-yl)alkanes. Unusual Rearrangement of Ligands Under Reaction Conditions[J]. Dalton Trans., 2019,48:3052-3060. doi: 10.1039/C8DT04816A

    17. [17]

      Bernini M C, de Paz J R, Snejko N, Saez-Puche R, Gutierrez-Puebla E, Monge M A. Unusual Magnetic Behaviors and Electronic Configurations Driven by Diverse Co(Ⅱ) or Mn(Ⅱ) MOF Architectures[J]. Inorg. Chem., 2014,53(24):12885-12895. doi: 10.1021/ic501898x

    18. [18]

      Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove B K, Yamashita M. Isostructural M(Ⅱ) Complexes (M=Mn, Fe, Co) with Field-Induced Slow Magnetic Relaxation for Mn and Co Complexes[J]. Dalton Trans., 2019,48:12023-12030. doi: 10.1039/C8DT02150C

    19. [19]

      Zhang J Y, Wang K, Li X B, Gao E Q. Magnetic and Slow Relaxation of Magnetization in Chain-Based Mn, Co, and Ni Coordination Frameworks[J]. Inorg. Chem., 2014,53(17):9306-9314. doi: 10.1021/ic5014279

    20. [20]

      Su F, Lu L P, Feng S S, Zhu M L, Gao Z Q, Dong Y H. Synthesis, Structures and Magnetic Properties in 3d-Electron-Rich Isostructural Complexes Based on Chains with Sole Syn-Anti Carboxylate Bridges[J]. Dalton Trans., 2015,44:7213-7222. doi: 10.1039/C5DT00412H

    21. [21]

      Gusev A, Nemec I, Herchel R, Riush I, Titis J, Boca R, Lyssenko K, Kiskin M, Eremenko I, Linert W. Structural and Magnetic Characterization of Ni(Ⅱ), Co(Ⅱ), and Fe(Ⅱ) Binuclear Complexes on a Bis(pyridyltriazolyl)alkane Basis[J]. Dalton Trans., 2019,48:10526-10536. doi: 10.1039/C9DT01391A

    22. [22]

      Blatov V A, Shevchenko A P, Proserpio D M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro[J]. Cryst. Growth Des., 2014,14(7):3576-3586. doi: 10.1021/cg500498k

    23. [23]

      Chen M S, Deng Y F, Zhang C H, Sheng L B, Lu W H, Sun J B. Solvothermal Synthesis, Crystal Structure and Property of a Three-Dimensional Fe(Ⅱ) Complex: [Fe(INAIP)(DMF)]n·0.5nDMF[J]. Chin. J. Struct. Chem., 2021,40(5):625-630.

    24. [24]

      Whitfield T, Zheng L M, Wang X, Jacobson A J. Syntheses and Characterization of Co(pydc)(H2O)2 and Ni(pydc)(H2O) (pydc=3, 5-Pyridinedicarboxylate)[J]. Solid State Sci., 2001,3:829-835. doi: 10.1016/S1293-2558(01)01218-3

    25. [25]

      Coronado E, Galan-Mascaros J R, Gomez-Garcia C J, Murcia-Martinez A. Chiral Molecular Magnets: Synthesis, Structure, and Magnetic Behavior of the Series[M(L-tart)] (M=Mn, Fe, Co, Ni; L-tart= (2R, 3R)-(+)-Tartrate)[J]. Chem. Eur. J., 2006,12:3484-3492. doi: 10.1002/chem.200501351

    26. [26]

      Zhao N, Li Y, Gu J Z, Kirillova M V, Kirillov A M. Hydrothermal Generation, Structural Versatility and Properties of Meta(Ⅱ)-Organic Architectures Driven by a Pyridine-Tricarboxylic Acid[J]. Dalton Trans., 2019,48:8361-8374. doi: 10.1039/C9DT01253B

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    19. [19]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(2)
  • Abstract views(442)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return