Citation: Ying-Ying ZHANG, Fei-Fei ZHANG, Lei MA, Li WANG, Jiang-Feng YANG. Control of High Stability CAU-10-X (X=H, NO2, CH3) Pore Chemical Environment for Efficient Capture of N2O[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2213-2221. doi: 10.11862/CJIC.2022.225 shu

Control of High Stability CAU-10-X (X=H, NO2, CH3) Pore Chemical Environment for Efficient Capture of N2O

  • Corresponding author: Jiang-Feng YANG, yangjiangfeng@tyut.edu.cn
  • Received Date: 3 May 2022
    Revised Date: 19 September 2022

Figures(8)

  • Three metal-organic frameworks (MOFs) materials, CAU-10-X (X=H, NO 2, CH3), with different substituents (—X) were synthesized and the adsorption and capture properties of N2O from N2O/N2 mixtures were studied. Considering the experimental results of single-component adsorption isotherm, adsorption heat, and IAST (ideal adsorbed solution theory) selectivity, we found that the adsorption capacity of CAU-10-NO2 was significantly higher than that of the parent CAU-10-H in the low-pressure region, and it could effectively capture N2O from the N2O/N2 mixture, while CAU-10-CH3 showed the opposite effect. The penetration simulation of N2O/N2 mixture further proved that CAU-10-NO2 had a good ability to capture trace N2O, and the cycle experiment showed that CAU-10-NO2 had good stability.
  • 加载中
    1. [1]

      Lashof D A, Ahuja D R. Relative Contributions of Greenhouse Gas Emissions to Global Warming[J]. Nature, 1990,344(6266):529-531. doi: 10.1038/344529a0

    2. [2]

      Mcglade C, Ekins P. The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 ℃[J]. Nature, 2015,517(7533):187-190. doi: 10.1038/nature14016

    3. [3]

      Hu Z, Lee J W, Chandran K, Kim S, Khanal S K. Nitrous Oxide (N2O) Emission from Aquaculture: A Review[J]. Environ. Sci. Technol., 2012,46(12):6470-6480. doi: 10.1021/es300110x

    4. [4]

      Montzka S A, Dlugokencky E J, Butler J H. Non-CO2 Greenhouse Gases and Climate Change[J]. Nature, 2011,476(7358):43-50. doi: 10.1038/nature10322

    5. [5]

      Zhao J F, Guo X W, Sun M R, Zhao Y C, Yang L, Song Y C. N2O Hydrate Formation in Porous Media: A Potential Method to Mitigate N2O Emissions[J]. Chem. Eng. J., 2019,361:12-20. doi: 10.1016/j.cej.2018.12.051

    6. [6]

      Xiao D J, Bloch E D, Mason J A, Queen W L, Hudson M R, Planas N, Borycz J, Dzubak A L, Verma P, Lee K, Bonino F, Crocella V, Yano J, Bordiga S, Truhlar D G, Gagliardi L, Brown C M, Long J R. Oxidation of Ethane to Ethanol by N2O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(Ⅱ) Sites[J]. Nat. Chem., 2014,6(7):590-595. doi: 10.1038/nchem.1956

    7. [7]

      Konsolakis M. Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects[J]. ACS Catal., 2015,5(11):6397-6421. doi: 10.1021/acscatal.5b01605

    8. [8]

      Bols M L, Snyder B E R, Rhoda H M, Cnudde P, Fayad G, Schoonheydt R A, Speybroeck V V, Solomon E I, Sels B F. Coordination and Activation of Nitrous Oxide by Iron Zeolites[J]. Nat. Catal., 2021,4(4):332-340. doi: 10.1038/s41929-021-00602-4

    9. [9]

      Severin K. Synthetic Chemistry with Nitrous Oxide[J]. Chem. Soc. Rev., 2015,44(17):6375-6386. doi: 10.1039/C5CS00339C

    10. [10]

      Hamilton S M, Hopkins W S, Harding D J, Walsh T R, Gruene P, Haertelt M, Fielicke A, Meijer G, Mackenzie S R. Infrared Induced Reactivity on the Surface of Isolated Size-Selected Clusters: Dissociation of N2O on Rhodium Clusters[J]. J. Am. Chem. Soc., 2010,132(5):1448-1449. doi: 10.1021/ja907496c

    11. [11]

      Tsai M L, Hadt R G, Vanelderen P, Sels B F, Schoonheydt R A, Solomon E I. [Cu2O]2+ Active Site Formation in Cu-ZSM-5: Geometric and Electronic Structure Requirements for N2O Activation[J]. J. Am. Chem. Soc., 2014,136(9):3522-3529. doi: 10.1021/ja4113808

    12. [12]

      Zeng R, Feller M, Diskin-Posner Y, Shimon L J W, Ben-David Y, Milstein D. CO Oxidation by N2O Homogeneously Catalyzed by Ruthenium Hydride Pincer Complexes Indicating a New Mechanism[J]. J. Am. Chem. Soc., 2018,140(23):7061-7064. doi: 10.1021/jacs.8b03927

    13. [13]

      Shimizu A, Tanaka K, Fujimori M. Abatement Technologies for N2O Emissions in the Adipic Acid Industry[J]. Chemosphere-Global. Change. Sci., 2000,2(3/4):425-434.

    14. [14]

      Zhang F M, Chen X, Zhuang J, Xiao Q, Zhong Y J, Zhu W D. Direct Oxidation of Benzene to Phenol by N2O over Meso-Fe-ZSM-5 Catalysts Obtained via Alkaline Post-Treatment[J]. Catal. Sci. Technol., 2011,1(7):1250-1255. doi: 10.1039/c1cy00133g

    15. [15]

      Grande C A, Poplow F, Rodrigues A E. Vacuum Pressure Swing Adsorption to Produce Polymer-Grade Propylene[J]. Sep. Sci. Technol., 2010,45(9):1252-1259. doi: 10.1080/01496391003652767

    16. [16]

      Groen J C, Pérez-Ramírez J, Zhu W. Adsorption of Nitrous Oxide on Silicalite-1[J]. J. Chem. Eng. Data, 2002,47(3):587-589. doi: 10.1021/je015527l

    17. [17]

      Saha D, Deng S G. Adsorption Equilibrium, Kinetics, and Enthalpy of N2O on Zeolite 4A and 13X[J]. J. Chem. Eng. Data, 2010,55(9):3312-3317. doi: 10.1021/je100105z

    18. [18]

      Saha D, Bao Z B, Jia F, Deng S G. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A[J]. Environ. Sci. Technol., 2010,44(5):1820-1826. doi: 10.1021/es9032309

    19. [19]

      Wang T C, Bury W, Gómez-Gualdrón D A, Vermeulen N A, Mondloch J E, Deria P, Zhang K, Moghadam P Z, Sarjeant A A, Snurr R Q, Stoddart J F, Hupp J T, Farha O K. Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory[J]. J. Am. Chem. Soc., 2015,137(10):3585-3591. doi: 10.1021/ja512973b

    20. [20]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in Fluorescence Recognition and Sensing of Solvent and Small Organic Molecules Based on Metal-Organic Framework[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244 

    21. [21]

      Zhang X P, Chen W J, Shi W, Cheng P. Highly Selective Sorption of CO2 and N2O and Strong Gas-Framework Interactions in a Nickel Organic Material[J]. J. Mater. Chem. A, 2016,4(41):16198-16204. doi: 10.1039/C6TA06572D

    22. [22]

      Wang L, Zhang F F, Wang C, Li Y, Yang J F, Li L B, Li J P. Ethylenediamine-Functionalized Metal Organic Frameworks MIL-100(Cr) for Efficient CO2/N2O Separation[J]. Sep. Purif. Technol., 2020,235116219. doi: 10.1016/j.seppur.2019.116219

    23. [23]

      Chen D L, Wang N W, Wang F F, Xie J W, Zhong Y J, Zhu W D, Johnson J K, Krishna R. Utilizing the Gate-Opening Mechanism in ZIF-7 for Adsorption Discrimination between N2O and CO2[J]. J. Phys. Chem. C, 2014,118(31):17831-17837. doi: 10.1021/jp5056733

    24. [24]

      Yang J F, Du B J, Liu J Q, Krishna R, Zhang F F, Zhou W, Wang Y, Li J P, Chen B L. MIL-100Cr with Open Cr Sites for a Record N2O Capture[J]. Chem. Commun., 2018,54(100):14061-14064. doi: 10.1039/C8CC07679K

    25. [25]

      Wang L, Zhang F F, Yang J F, Li L B, Li J P. The Efficient Separation of N2O/CO2 Using Unsaturated Fe2+ Sites in MIL-100Fe[J]. Chem. Commun., 2021,57(54):6636-6639. doi: 10.1039/D1CC01659H

    26. [26]

      Wang X N, Zhang P, Kirchon A, Li J L, Chen W M, Zhao Y M, Li B, Zhou H C. Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal-Organic Framework[J]. J. Am. Chem. Soc., 2019,141(34):13654-13663. doi: 10.1021/jacs.9b06711

    27. [27]

      Yin Z, Wan S, Yang J, Kurmoo M, Zeng M H. Recent Advances in Post-Synthetic Modification of Metal-Organic Frameworks: New Types and Tandem Reactions[J]. Coord. Chem. Rev., 2019,378:500-512. doi: 10.1016/j.ccr.2017.11.015

    28. [28]

      Ma L, Zhang F F, Li K J, Zhang Y Y, Song Z Q, Wang L, Yang J F, Li J P. Improved N 2O Capture Performance of Chromium Terephthalate MIL-101 via Substituent Engineering[J]. J. Solid. State. Chem., 2022,309122951. doi: 10.1016/j.jssc.2022.122951

    29. [29]

      Reinsch H, Van Der Veen M A, Gil B, Marszalek B, Verbiest T, De Vos D E, Stock N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs[J]. Chem. Mater., 2013,25(1):17-26. doi: 10.1021/cm3025445

    30. [30]

      Reinsch H, Waitschat S, Stock N. Mixed-Linker MOFs with CAU-10 Structure: Synthesis and Gas Sorption Characteristics[J]. Dalton Trans., 2013,42(14):4840-4847. doi: 10.1039/c3dt32355b

    31. [31]

      Gao C, Su Y, Quan X, Sharma V K, Chen S, Yu H T, Zhang Y B, Niu J F. Electronic Modulation of Iron-Bearing Heterogeneous Catalysts to Accelerate Fe(Ⅲ)/Fe(Ⅱ) Redox Cycle for Highly Efficient Fenton-like Catalysis[J]. Appl. Catal. B-Environ., 2020,276119016. doi: 10.1016/j.apcatb.2020.119016

    32. [32]

      Myers A L, Prausnitz J M. Thermodynamics of Mixed-Gas Adsorption[J]. Aiche. J., 1965,11(1):121-127. doi: 10.1002/aic.690110125

    33. [33]

      Kumar K V, Gadipelli S, Wood B, Ramisetty K A, Stewart A, Howard C A, Brett D J L, Rodriguez-Reinoso F. Characterization of the Adsorption Site Energies and Heterogeneous Surfaces of Porous Materials[J]. J. Mater. Chem. A, 2019,7(17):10104-10137. doi: 10.1039/C9TA00287A

    34. [34]

      SHANG H, BAI H H, LIU J Q, YANG J F, LI J P. PSA Simulation and Adsorption Separation of CH4-N2 by Self-Supporting Pellets Silicalite-1[J]. CIESC J., 2020,71(5):2088-2098.  

    35. [35]

      Shade D, Marszalek B, Walton K S. Structural Similarity, Synthesis, and Adsorption Properties of Aluminum-Based Metal-Organic Frameworks[J]. Adsorption, 2021,27(2):237-237. doi: 10.1007/s10450-021-00303-1

    36. [36]

      Wang L, Li Y, Wang Y, Yang J F, Li L B, Li J P. Research on CO2-N2O Separation Using Flexible Metal Organic Frameworks[J]. Sep. Purif. Technol., 2020,251117311. doi: 10.1016/j.seppur.2020.117311

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    16. [16]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(14)
  • Abstract views(768)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return