Citation: Yan-Xia CHEN, Li-Chuan TAN, Peng WANG, Guang-Song YUAN, Si-Wen FENG, Cui-Juan WANG, Yan TONG, Min XU. Hierarchical Porous Cu⁃BTC Doped with Ni(Ⅱ) for Efficient Removal of Tetracycline from Water[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2238-2248. doi: 10.11862/CJIC.2022.223 shu

Hierarchical Porous Cu⁃BTC Doped with Ni(Ⅱ) for Efficient Removal of Tetracycline from Water

  • Corresponding author: Cui-Juan WANG, wangcuijuan@swjtu.edu.cn
  • Received Date: 14 April 2022
    Revised Date: 7 September 2022

Figures(9)

  • In this study, a Ni(Ⅱ)⁃doped hierarchical porous metal⁃organic framework (HP⁃Ni⁃Cu⁃BTC, H3BTC= benzene⁃1, 3, 5⁃tricarboxylic acid) hierarchical porous metal⁃organic framework was successfully prepared, and applied as an adsorbent for the removal of tetracycline (TC). The Ni(Ⅱ) doping and hierarchical porosity structure significantly increased the adsorption capacity of TC, which was 3.28 times that of microporous Cu⁃BTC. The adsorption kinetics and adsorption isotherm studies demonstrated that chemisorption dominated the adsorption reaction and that the adsorption of TC on HP⁃Ni⁃Cu⁃BTC proceeds through multilayer adsorption on a non⁃homogeneous adsorbent surface. Moreover, in the cycling experiments, there was still 71.45% adsorption efficiency after four times of reuse, indicating that HP⁃Ni⁃Cu⁃BTC had good reusability.
  • 加载中
    1. [1]

      Yu H B, Huang B B, Wang H, Yuan X Z, Jiang L B, Wu Z B, Zhang J, Zeng G M. Facile Construction of Novel Direct Solid-State Z-Scheme AgI/BiOBr Photocatalysts for Highly Effective Removal of Ciprofloxacin under Visible Light Exposure: Mineralization Efficiency and Mechanisms[J]. J. Colloid Interface Sci., 2018,522:82-94. doi: 10.1016/j.jcis.2018.03.056

    2. [2]

      Zhang Q Q, Ying G G, Pan C G, Liu Y S, Zhao J L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance[J]. Environ. Sci. Technol., 2015,49(11):6772-6782. doi: 10.1021/acs.est.5b00729

    3. [3]

      Wang D B, Jia F Y, Wang H, Chen F, Fang Y, Dong W B, Zeng G M, Li X M, Yang Q, Yuan X Z. Simultaneously Efficient Adsorption and Photocatalytic Degradation of Tetracycline by Fe-Based MOFs[J]. J. Colloid Interface Sci., 2018,519:273-284. doi: 10.1016/j.jcis.2018.02.067

    4. [4]

      Gao P, Xu W L, Ruan X H, Qian Y J, Xue G, Jia H Z. Long-Term Impact of a Tetracycline Concentration Gradient on the Bacterial Resistance in Anaerobic-Aerobic Sequential Bioreactors[J]. Chemosphere, 2018,205:308-316. doi: 10.1016/j.chemosphere.2018.04.135

    5. [5]

      Sun Y, Yuan J H, Zhou T, Zhao Y C, Yu F, Ma J. Laboratory Simulation of Microplastics Weathering and Its Adsorption Behaviors in an Aqueous Environment: A Systematic Review[J]. Environ. Pollut., 2020,265114864. doi: 10.1016/j.envpol.2020.114864

    6. [6]

      Ma Y F, Li M, Li P, Yang L, Wu L, Gao F, Qi X B, Zhang Z L. Hydrothermal Synthesis of Magnetic Sludge Biochar for Tetracycline and Ciprofloxacin Adsorptive Removal[J]. Bioresour. Technol., 2021,319124199. doi: 10.1016/j.biortech.2020.124199

    7. [7]

      Song Z, Ma Y L, Li C E, Xu M, Zhang C. Molecular Sieving Film Prepared by Vacuum Filtration for the Efficient Removal of Tetracycline Antibiotics from Pharmaceutical Wastewater[J]. Adv. Mater. Sci. Eng., 2019,20193532576.

    8. [8]

      Cao P Y, Zhang Y P, Gao D, Chen H X, Zhou M L, He Y F, Song P F, Wang R M. Constructing Nano-Heterojunction of MOFs with Crystal Regrowth for Efficient Degradation of Tetracycline under Visible Light[J]. J. Alloy. Compd., 2022,904164061. doi: 10.1016/j.jallcom.2022.164061

    9. [9]

      Zhang Y F, Wei J, Xing L Y, Li J, Xu M D, Pan G P, Li J. Superoxide Radical Mediated Persulfate Activation by Nitrogen Doped Bimetallic MOF (FeCo/N-MOF) for Efficient Tetracycline Degradation[J]. Sep. Purif. Technol., 2022,282120124. doi: 10.1016/j.seppur.2021.120124

    10. [10]

      Li L Q, Zhao J H, Sun Y R, Yu F, Ma J. Ionically Cross-Linked Sodium Alginate/K-Carrageenan Double-Network Gel Beads with Low-Swelling, Enhanced Mechanical Properties, and Excellent Adsorption Performance[J]. Chem. Eng. J., 2019,372:1091-1103. doi: 10.1016/j.cej.2019.05.007

    11. [11]

      Xie L H, Liu X M, He T, Li J R. Metal-Organic Frameworks for the Capture of Trace Aromatic Volatile Organic Compounds[J]. Chem, 2018,4(8):1911-1927. doi: 10.1016/j.chempr.2018.05.017

    12. [12]

      Hasan Z, Jhung S H. Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions[J]. J. Hazard. Mater., 2015,283:329-339. doi: 10.1016/j.jhazmat.2014.09.046

    13. [13]

      Dhaka S, Kumar R, Deep A, Kurade M B, Ji S W, Jeon B H. Metal-Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments[J]. Coord. Chem. Rev., 2019,380:330-352. doi: 10.1016/j.ccr.2018.10.003

    14. [14]

      Zhou Y, Yang Q, Zhang D N, Gan N, Li Q P, Cuan J. Detection and Removal of Antibiotic Tetracycline in Water with a Highly Stable Luminescent MOF[J]. Sens. Actuators B-Chem., 2018,262:137-143. doi: 10.1016/j.snb.2018.01.218

    15. [15]

      Wang B, Lv X L, Feng D, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. Highly Stable Zr(Ⅳ)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    16. [16]

      Kabtamu D M, Wu Y N, Li F T. Hierarchically Porous Metal-Organic Frameworks: Synthesis Strategies, Structure(s), and Emerging Applications in Decontamination[J]. J. Hazard. Mater., 2020,397122765. doi: 10.1016/j.jhazmat.2020.122765

    17. [17]

      Shi Z N, Li L, Xiao Y X, Wang Y X, Sun K K, Wang H X, Liu L. Synthesis of Mixed-Ligand Cu-MOFs and Their Adsorption of Malachite Green[J]. RSC Adv., 2017,7(49):30904-30910. doi: 10.1039/C7RA04820C

    18. [18]

      Feng L, Yuan S, Zhang L L, Tan K, Li J L, Kirchon A, Liu L M, Zhang P, Han Y, Chabal Y J, Zhou H C. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2018,140(6):2363-2372. doi: 10.1021/jacs.7b12916

    19. [19]

      Zhang W N, Liu Y Y, Lu G, Wang Y, Li S Z, Cui C L, Wu J, Xu Z L, Tian D B, Huang W, DuCheneu J S, Wei W D, Chen H Y, Yang Y H, Huo F W. Mesoporous Metal-Organic Frameworks with Size-, Shape-, and Space-Distribution-Controlled Pore Structure[J]. Adv. Mater., 2015,27(18):2923-2929. doi: 10.1002/adma.201405752

    20. [20]

      Dissegna S, Hardian R, Epp K, Kieslich G, Coulet M V, LIewellyn P, Fischer R A. Using Water Adsorption Measurements to Access the Chemistry of Defects in the Metal-Organic Framework UiO-66[J]. CrystEngComm, 2017,19(29):4137-4141. doi: 10.1039/C7CE00224F

    21. [21]

      Cao Y, Ma Y, Wang T, Wang X, Huo Q S, Liu Y L. Facile Fabricating Hierarchically Porous Metal-Organic Frameworks via a Template-Free Strategy[J]. Cryst. Growth Des., 2016,16(1):504-510. doi: 10.1021/acs.cgd.5b01559

    22. [22]

      Abdelhamid H N, Zou X D. Template-Free and Room Temperature Synthesis of Hierarchical Porous Zeolitic Imidazolate Framework Nanoparticles and Their Dye and CO2 Sorption[J]. Green Chem., 2018,20(5):1074-1084. doi: 10.1039/C7GC03805D

    23. [23]

      Yu C X, Shao Z C, Hou H W. A Functionalized Metal-Organic Framework Decorated with O-Groups Showing Excellent Performance for Lead(Ⅱ) Removal from Aqueous Solution[J]. Chem. Sci., 2017,8(11):7611-7619. doi: 10.1039/C7SC03308G

    24. [24]

      Hu P, Zhao Z X, Sun X D, Muhammad Y, Li J, Chen S B, Pang C J, Liao T T, Zhao Z X. Construction of Crystal Defect Sites in N-Coordinated UiO-66 via Mechanochemical In-Situ N-Doping Strategy for Highly Selective Adsorption of Cationic Dyes[J]. Chem. Eng. J., 2019,356:329-340. doi: 10.1016/j.cej.2018.09.060

    25. [25]

      Yan A X, Yan S, Li Y G, Zhang Z M, Lu Y, Chen W L, Wang E B. Incorporating Polyoxometalates into a Porous MOF Greatly Improves Its Selective Adsorption of Cationic Dyes[J]. Chem. Eur. J., 2014,20(23):6927-6933. doi: 10.1002/chem.201400175

    26. [26]

      Yang J M, Ying R J, Han C X, Hu Q T, Xu H M, Li J H, Wang Q, Zhang W. Adsorptive Removal of Organic Dyes from Aqueous Solution by a Zr-Based Metal-Organic Framework: Effects of Ce(Ⅲ) Doping[J]. Dalton Trans., 2018,47(11):3913-3920. doi: 10.1039/C8DT00217G

    27. [27]

      Yang J M, Yang B C, Zhang Y, Yang R N, Ji S S, Wang Q, Quan S, Zhang R Z. Rapid Adsorptive Removal of Cationic and Anionic Dyes from Aqueous Solution by a Ce(Ⅲ)-Doped Zr-Based Metal-Organic Framework[J]. Microporous Mesoporous Mater., 2020,292109764. doi: 10.1016/j.micromeso.2019.109764

    28. [28]

      Sun S W, Yang Z H, Cao J, Wang Y, Xiong W P. Copper-Doped ZIF-8 with High Adsorption Performance for Removal of Tetracycline from Aqueous Solution[J]. J. Solid State Chem., 2020,285121219. doi: 10.1016/j.jssc.2020.121219

    29. [29]

      Li X L, Zhang W, Huang Y Q, Wang Q, Yang J M. Superior Adsorptive Removal of Azo Dyes from Aqueous Solution by a Ni(Ⅱ)-Doped Metal-Organic Framework[J]. Colloids Surf. A Physicochem. Eng. Asp., 2021,619126549. doi: 10.1016/j.colsurfa.2021.126549

    30. [30]

      Pan J Y, Bai X T, Li Y Y, Yang B H, Yang P Y, Yu F, Ma J. HKUST-1 Derived Carbon Adsorbents for Tetracycline Removal with Excellent Adsorption Performance[J]. Environ. Res., 2022,205112425. doi: 10.1016/j.envres.2021.112425

    31. [31]

      Zhang Z, Chen Y, Hu C Y, Zuo C, Wang P, Chen W Q, Ao T Q. Efficient Removal of Tetracycline by a Hierarchically Porous ZIF-8 Metal Organic Framework[J]. Environ. Res., 2021,198111254. doi: 10.1016/j.envres.2021.111254

    32. [32]

      Alotaibi N, Hammud H H, Otaibi N A, Hussain S G, Prakasam T. Novel Cobalt-Carbon@Silica Adsorbent[J]. Sci. Rep., 2020,1018652. doi: 10.1038/s41598-020-75367-0

    33. [33]

      Gao Y, Li Y, Zhang L, Huang H, Hu J J, Shah S M, Su X G. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide[J]. J. Colloid Interface Sci., 2012,368(1):540-546. doi: 10.1016/j.jcis.2011.11.015

    34. [34]

      Li Z H, Schulz L, Ackley C, Fenske N. Adsorption of Tetracycline on Kaolinite with pH-Dependent Surface Charges[J]. J. Colloid Interface Sci., 2010,351(1):254-260. doi: 10.1016/j.jcis.2010.07.034

    35. [35]

      Zhang L, Song X Y, Liu X Y, Yang L J, Pan F, Lv J N. Studies on the Removal of Tetracycline by Multiwalled Carbon Nanotubes[J]. Chem. Eng. J., 2011,178:26-33. doi: 10.1016/j.cej.2011.09.127

    36. [36]

      Tian N, Jia Q M, Su H Y, Zhi Y F, Ma A H, Wu J, Shan S Y. The Synthesis of Mesostructured NH2-MIL-101(Cr) and Kinetic and Thermodynamic Study in Tetracycline Aqueous Solutions[J]. J. Porous Mater., 2016,23:1269-1278. doi: 10.1007/s10934-016-0186-z

    37. [37]

      Xiong W P, Zeng Z T, Li X, Zeng G M, Xiao R, Yang Z H, Xu H Y, Chen H B, Cao J, Zhou C Y, Qin L. Ni-Doped MIL-53(Fe) Nanoparticles for Optimized Doxycycline Removal by Using Response Surface Methodology from Aqueous Solution[J]. Chemosphere, 2019,232:186-194. doi: 10.1016/j.chemosphere.2019.05.184

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    3. [3]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    4. [4]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    8. [8]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    11. [11]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    12. [12]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    13. [13]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    14. [14]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    15. [15]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    16. [16]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    17. [17]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    18. [18]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    19. [19]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(12)
  • Abstract views(595)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return