Citation: Ming DENG, Zhuo YANG, Jie-Ying DING, Xiang-Yi LI, Yan-Jing YANG, Yan-Hui GUO. Progress in Preparation and Application in Solid Electrolyte of closo-Decahydrodecaborate[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2127-2142. doi: 10.11862/CJIC.2022.222 shu

Progress in Preparation and Application in Solid Electrolyte of closo-Decahydrodecaborate

  • Corresponding author: Yan-Hui GUO, gyh@fudan.edu.cn
  • Received Date: 3 May 2022
    Revised Date: 25 August 2022

Figures(8)

  • All-solid-state batteries (ASSBs) are commonly regarded as prospective electrochemical energy storage devices, which can overcome the drawbacks of conventional liquid electrolyte batteries, including electrolyte leak- age, low stability, flammability, and limited energy density. In the research of ASSBs, developing solid electrolyte (SE) with high ionic conductivity and a wide electrochemical stability window is critical to the development of ASSBs with high energy and power density. Recently, hydroborate- based SEs have received extensive attention as they offer a comprehensive combination of super-ionic conductivity at high temperature, high thermal stability, and low density. Among these, one of the most promising materials is the alkali-metal salts of closo-decahydrodecaborate (B10H102-). Since B10H102- was first discovered in 1959, its synthetic methods and application have been widely stud- ied. After years of research, mature methods for the preparation of the B10H102- compounds have been developed, which can satisfy the supply demands in the laboratory. As a multifunctional material, decahydrodecaborate has been intensively studied for several applications. In particular, as a promising candidate for SE, the sodium and lithium closo-decahydrodecaborates M2B10H10 (M=Na, Li) have been proved to own excellent ionic conductivity as well as high thermal and chemical stability. To further improve the electrochemical performances of B10H102--based elec- trolytes at room temperature, many modification strategies have been explored and implemented, including halogen substitution, carboranate, mechanical ball milling, complex anion alloying, and dimerization. This review mainly describes the progress of preparation and application in the solid electrolyte of B10H102-, summarizes the modification strategies of better - performance B10H102- based SE, and also puts forward prospects for the future development of B10H102- as SE in ASSBs.
  • 加载中
    1. [1]

      Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Funda- mentals of Inorganic Solid-State Electrolytes for Batteries[J]. Nat. Mater., 2019,18:1278-1291. doi: 10.1038/s41563-019-0431-3

    2. [2]

      Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Sulfide-Based Solid - State Electrolytes: Synthesis, Stability, and Potential for All - Solid-State Batteries[J]. Adv. Mater., 2019,311901131. doi: 10.1002/adma.201901131

    3. [3]

      Cuan J, Zhou Y, Zhou T F, Ling S G, Rui K, Guo Z P, Liu H K, Yu X B. Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Prom- ising Solid-State Electrolytes[J]. Adv. Mater., 2019,311803533. doi: 10.1002/adma.201803533

    4. [4]

      Stock A. Hydrides of Boron and Silicon. New York: Cornell University Press, 1933.

    5. [5]

      Zheng X F, Yang Y J, Zhao F Q, Fang F, Guo Y H. Facile Preparation and Dehydrogenation of Unsolvated KB3H8[J]. Chem. Commun., 2017,53:11083-11086. doi: 10.1039/C7CC06414D

    6. [6]

      Chen X M, Ma N N, Liu X R, Wei C G, Cui C C, Cao B L, Guo Y H, Wang L S, Gu Q F, Chen X N. Facile Synthesis of Unsolvated Alkali Metal Octahydrotriborate Salts MB3H8 (M=K, Rb, and Cs), Mechanisms of Formation, and the Crystal Structure of KB3H8[J]. Angew. Chem. Int. Ed., 2019,58:2720-2724. doi: 10.1002/anie.201812795

    7. [7]

      JIANG Y K. Synthesis and Properties of closo-Dodecaborate and closo- Decaborate Compounds. Shanghai: Fudan University, 2018.

    8. [8]

      PAN X X, HUANG X F, LI S J, YANG Y J, ZHANG J K, JIANG Y K, SHEN J F, GUO Y H. Ignition and Combustion Characteristics of Tetraethylammonium Dodecahydrododecaborates[J]. Chinese Journal of Explosives & Propellants, 2019,42(6):614-620.  

    9. [9]

      Chen X M, Ma N N, Zhang Q F, Wang J, Feng X G, Wei C G, Wang L S, Zhang J, Chen X N. Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion B3H8- through the Nucleophilicity of the B—H Bond[J]. J. Am. Chem. Soc., 2018,140:6718-6726. doi: 10.1021/jacs.8b03785

    10. [10]

      Moury R, Lodziana Z, Remhof A, Duchene L, Roedern E, Gigante A, Hagemann H. Study of the Temperature - and Pressure - Dependent Structural Properties of Alkali Hydrido - closo -Borate Compounds[J]. Inorg. Chem., 2022,61:5224-5233. doi: 10.1021/acs.inorgchem.1c03681

    11. [11]

      Hansen B R S, Paskevicius M, Li H W, Akiba E, Jensen T R. Metal Boranes: Progress and Applications[J]. Coord. Chem. Rev., 2016,323:60-70. doi: 10.1016/j.ccr.2015.12.003

    12. [12]

      NIE Y, CHEN H Y, MIAO J L, SUN G X, DOU J M. Advances in the Chemistry and Applications of the Borane Anion closo-B10H102- and Its Dericatives[J]. Chin. J. Org. Chem., 2009,29(6):822-834.  

    13. [13]

      Dobbins T A. Overview of the Structure-Dynamics-Function Relationships in Borohydrides for Use as Solid-State Electrolytes in Bat- tery Applications[J]. Molecules, 2021,263239. doi: 10.3390/molecules26113239

    14. [14]

      Hawthorne M F, Pitochelli A R. The Reaction of Bis - acetonitrile Decaborane with Amines[J]. J. Am. Chem. Soc., 1959,815519.

    15. [15]

      Lipscomb W N, Pitochelli A R. Probable Structure of the B10H102- Ion[J]. J. Am. Chem. Soc., 1959,81:5833-5834.

    16. [16]

      Pitochelli A R, Ettinger R, Dupont J A. Observations on the Mechanism of B10H102- Formation[J]. J. Am. Chem. Soc., 1962,84:1057-1058. doi: 10.1021/ja00865a041

    17. [17]

      Dobrott R D, Lipscomb W N. Structure of Cu2B10H10[J]. J. Chem. Phys., 1962,37:1779-1784. doi: 10.1063/1.1733368

    18. [18]

      Muetterties E L, Balthis J H. Chemistry of Boranes. VⅢ. Salts and Acids of B10H102- and B12H122-[J]. Inorg. Chem., 1964,3:444-451. doi: 10.1021/ic50013a030

    19. [19]

      Hawthorne M F, Pilling R L, Grimes R N. The Mechanism of B10H102- Formation from B10H12(ligand)2 Species[J]. J. Am. Chem. Soc., 1967,89:1067-1074. doi: 10.1021/ja00981a005

    20. [20]

      Makhlouf J M, Hough W V. Practical Synthesis for Decahydrodecab- orates[J]. Inorg. Chem., 1967,6:1196-1198. doi: 10.1021/ic50052a028

    21. [21]

      Guillevic G, Maillot F, Mongeot H, Dazord J, Cueilleron J. Preparation of Tetraalkylammonium Borohydrides by Ion-Exchanges[J]. Bull. Soc. Chim. Fr., 1976,7-8:1099-1100.

    22. [22]

      ZHANG G M, ZHU H. Study on Boron Compounds Ⅰ. A New Method for the Synthesis of B10H102- Anion[J]. Acta Chim. Sinica, 1978(4):315-318.  

    23. [23]

      Colombier M, Atchekzaï J, Mongeot H. Studies of the Pyrolysis of Tetraethylammonium Tetrahydroborate[J]. Inorg. Chim. Acta, 1986,115:11-16. doi: 10.1016/S0020-1693(00)87692-6

    24. [24]

      Mongeot H, Bonnetot B, Atchekzaï J, Colombier M, Vigotviellard C. (Et4N)2B10H10 and (Et4N)2B12H12-Synthesis from Et4NBH4, Separation and Purification[J]. Bull. Soc. Chim. Fr., 1986:385-389.

    25. [25]

      Li S J, Pan X X, Jiang Y K, Chang S H, Jin X, Yang Y J, Huang X F, Guo Y H. Ignition and Combustion Behaviors of High Energetic Polyhedral Boron Cluster[J]. Propellants Explos. Pyrotech., 2019,44:1319-1326. doi: 10.1002/prep.201800389

    26. [26]

      Sivaev I, Bregadze V, Kuznetsov N. Derivatives of the closo-Dodecaborate Anion and Their Application in Medicine[J]. Russ. Chem. Bull., 2002,51:1362-1374. doi: 10.1023/A:1020942418765

    27. [27]

      Yisgedu T B, Huang Z G, Chen X N, Lingam H K, King G, Highley A, Maharrey S, Woodward P M, Behrens R, Shore S G, Zhao J C. The Structural Characterization of (NH4)2B10H10 and Thermal Decom- position Studies of (NH4)2B10H10 and (NH4)2B12H12[J]. Int. J. Hydrog. Energy, 2012,37:4267-4273. doi: 10.1016/j.ijhydene.2011.11.112

    28. [28]

      Hu P, Wang J Q, Wang F S, Jin G X. Preparation, Structure, and Ethylene (Co)polymerization Behavior of Group IV Metal Complexes with an[OSSO] - Carborane Ligand[J]. Chem. Eur. J., 2011,17:8576-8583. doi: 10.1002/chem.201100291

    29. [29]

      Jankowiak A, Baliński A, Harvey J E, Mason K, Januszko A, Kaszyński P, Young V G, Persoons A. closo-B10H102- as a Structural Element for Quadrupolar Liquid Crystals: A New Class of Liquid Crystalline NLO Chromophores[J]. J. Mater. Chem. C, 2013,1:1144-1159. doi: 10.1039/C2TC00547F

    30. [30]

      Udovic T J, Matsuo M, Tang W S, Wu H, Stavila V, Soloninin A V, Skoryunov R V, Babanova O A, Skripov A V, Rush J J, Unemoto A, Takamura H, Orimo S. Exceptional Superionic Conductivity in Disordered Sodium Decahydro - closo -Decaborate[J]. Adv. Mater., 2014,26:7622-7626. doi: 10.1002/adma.201403157

    31. [31]

      Wu H, Tang W S, Stavila V, Zhou W, Rush J J, Udovic T J. Structural Behavior of Li2B10H10[J]. J. Phys. Chem. C, 2015,119:6481-6487.

    32. [32]

      Lu Z H, Ciucci F. Structural Origin of the Superionic Na Conduction in Na2B10H10 closo-Borates and Enhanced Conductivity by Na Deficiency for High Performance Solid Electrolytes[J]. J. Mater. Chem. A, 2016,4:17740-17748. doi: 10.1039/C6TA07443J

    33. [33]

      Lu Z H, Ciucci F. Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study[J]. Chem. Mater., 2017,29:9308-9319. doi: 10.1021/acs.chemmater.7b03284

    34. [34]

      Varley J B, Kweon K, Mehta P, Shea P, Heo T W, Udovic T J, Stavila V, Wood B C. Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics[J]. ACS Energy Lett., 2016,2:250-255.

    35. [35]

      Sadikin Y, Schouwink P, Brighi M, Lodziana Z, Cerny R. Modified Anion Packing of Na2B12H12 in Close to Room Temperature Superionic Conductors[J]. Inorg. Chem., 2017,56:5006-5016. doi: 10.1021/acs.inorgchem.7b00013

    36. [36]

      Hansen B R S, Paskevicius M, Jørgensen M, Jensen T R. Halogenated Sodium- closo -Dodecaboranes as Solid-State Ion Conductors[J]. Chem. Mater., 2017,29:3423-3430. doi: 10.1021/acs.chemmater.6b04797

    37. [37]

      Knoth W H, Miller H C. Chemistry of Boranes. IX. Halogenation of B10H102- and B12H122-[J]. Inorg. Chem., 1964,3:159-167. doi: 10.1021/ic50012a002

    38. [38]

      Buhrens K G, Preetz W. Trennung Der Halogenohydroborate Des Typs B10H10-nXn2- Durch Hochspannungsionophorese. J. Chromatogr. A, 1977, 139: 291-295
      Buhrens K G, Preetz W. Separation of B10H10-nXn2- Type Halogeno- hydroborates by High Voltage Ionophoresis. J. Chromatogr. A, 1977, 139: 291-295

    39. [39]

      Preetz W, Nachtigal C. Kristallstruktur von Dipyridiniomethan- Monohalogenohydro-closo-Decaboraten(2-), [(C5H5N)2CH2][2-XB10H9]; X=Cl, Br, I. Z. Anorg. Allg. Chem., 1995, 621: 1632-1636
      Preetz W, Nachtigal C. Crystal Structure or Dipyridiniomethan- Monohalogenohydro-closo-Decaboraten(2-), [(C5H5N)2CH2][2-XB10H9]; X=Cl, Br, I. Z. Anorg. Allg. Chem., 1995, 621: 1632-1636

    40. [40]

      Ivanov S, Ivanova S, Miller S, Anderson O, Kuznetsov N, Solntsev K, Strauss S. Synthesis, Spectroscopic Characterization, and Structure of closo-1, 10-B10H8F22- and Related Fluorinated Derivatives of B10H102-[J]. Collect. Czech. Chem. Commun., 1997,62:1310-1324. doi: 10.1135/cccc19971310

    41. [41]

      Drozdova V V, Zhizhin K Y, Malinina E A, Polyakova I N, Kuznetsov N T. Reaction of the closo-Decaborate Anion B10H102- with Dichloroethane in the Presence of Hydrogen Halides[J]. Russ. J. Inorg. Chem., 2007,52:996-1001. doi: 10.1134/S0036023607070042

    42. [42]

      Zhizhin K Y, Zhdanov A P, Kuznetsov N T. Derivatives of closo-Decaborate Anion B10H102- with Exo- polyhedral Substituents[J]. Russ. J. Inorg. Chem., 2010,55:2089-2127. doi: 10.1134/S0036023610140019

    43. [43]

      Retivov V, Matveev E, Lisovskiy M, Razgonyaeva G, Ochertyanova L, Zhizhin K, Kuznetsov N. Nucleophilic Substitution in closo-decaborate B10H102- in the Presence of Carbocations[J]. Russ. Chem. Bull., 2010,59:550-555. doi: 10.1007/s11172-010-0123-2

    44. [44]

      Holub J, El Anwar S, Jelínek T, Fojt L, Růžičková Z, Šolínová V, Kašička V, Gabel D, Grüner B. Polyhalogenated Decaborate and 1- Ammoniododecaborate Ions: An Improved Synthesis with Elemental Halogens, and Physicochemical and Chemical Properties[J]. Eur. J. Inorg. Chem., 2017,2017:4499-4509. doi: 10.1002/ejic.201700651

    45. [45]

      Rzeszotarska E, Novozhilova I, Kaszynski P. Convenient Synthesis of[closo-B10H9-1-I](2-) and[closo-B10H8-1, 10-I2](2-) Anions[J]. Inorg. Chem., 2017,56:14351-14356. doi: 10.1021/acs.inorgchem.7b02477

    46. [46]

      Li S H, Qiu P T, Kang J X, Ma Y M, Zhang Y C, Yan Y G, Jensen T R, Guo Y H, Zhang J, Chen X N. Iodine-Substituted Lithium/Sodium closo-Decaborates: Syntheses, Characterization, and Solid-State Ionic Conductivity[J]. ACS Appl. Mater. Interfaces, 2021,13:17554-17564. doi: 10.1021/acsami.1c01659

    47. [47]

      Dey A N, Miller J. Primary Li/SOCl2 Cells: Ⅶ. Effect of Li2B10Cl10 and Li2B12Cl12 Electrolyte Salts on the Performance[J]. J. Electrochem. Soc., 1979,126:1445-1451. doi: 10.1149/1.2129304

    48. [48]

      Johnson J W, Whittingham M. Lithium Closoboranes as Electrolytes in Solid Cathode Lithium Cells[J]. J. Am. Chem. Soc., 1980,127:1653-1654.

    49. [49]

      Johnson J W, Thompson A. Lithium Closoboranes Ⅱ. Stable Non- aqueous Electrolytes for Elevated Temperature Lithium Cells[J]. J. Electrochem. Soc., 1981,128:932-933. doi: 10.1149/1.2127537

    50. [50]

      Johnson J, Brody J. Lithium Closoboranes Electrolytes Ⅲ. Preparation and Characterization[J]. J. Electrochem. Soc., 1982,129:2213-2219.

    51. [51]

      Knoth W H. 1-B9H9CH- and B11H11CH-[J]. J. Am. Chem. Soc., 1967,89:1274-1275. doi: 10.1021/ja00981a048

    52. [52]

      Knoth W H. B10H12CNH3, B99CH-, B11H11CH-, and Metallomono- carboranes[J]. Inorg. Chem., 1971,10:598-605. doi: 10.1021/ic50097a031

    53. [53]

      Nestor K, Stibr B. Ten-Vertex Monocarbaborane Chemistry. A Convenient New Preparation of the closo-1-CCB9H10- Anion and the Crystal and Molecular Structure of[(η5-C5Me5)2Ir2Cl3]+[closo-1-CB9H10]-[J]. Collect. Czech. Chem. C, 1992,57:1262-1268. doi: 10.1135/cccc19921262

    54. [54]

      Brellochs B. New Routes to Carboranes//Contemporary Boron Chemistry. S. l.; The Royal Society of Chemistry, 2000: 212-214

    55. [55]

      Ringstrand B, Bateman D, Shoemaker R K, Janoušek Z. Improved Synthesis of[closo-1-CB9H10]- Anion and New C-Substituted Derivatives[J]. Collect. Czech. Chem. Commun., 2009,74:419-431. doi: 10.1135/cccc2008151

    56. [56]

      Li S H, Zhang Y C, Ma Y M, Qiu P T, Chen X N. Improved and Scalable Synthesis of[Et4N][closo-1-CHB9H9][J]. Organometallics, 2021,40:3480-3485. doi: 10.1021/acs.organomet.1c00478

    57. [57]

      Dimitrievska M, Shea P, Kweon K E, Bercx M, Varley J B, Tang W S, Skripov A V, Stavila V, Udovic T J, Wood B C. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12[J]. Adv. Energy Mater., 2018,81703422. doi: 10.1002/aenm.201703422

    58. [58]

      Fisher S P, Tomich A W, Lovera S O, Kleinsasser J F, Guo J, Asay M J, Nelson H M, Lavallo V. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage[J]. Chem. Rev., 2019,119:8262-8290. doi: 10.1021/acs.chemrev.8b00551

    59. [59]

      Tang W S, Unemoto A, Zhou W, Stavila V, Matsuo M, Wu H, Orimo S, Udovic T J. Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions[J]. Energy Environ. Sci., 2015,8:3637-3645. doi: 10.1039/C5EE02941D

    60. [60]

      Tang W S, Matsuo M, Wu H, Stavila V, Zhou W, Talin A A, Soloninin A V, Skoryunov R V, Babanova O A, Skripov A V, Unemoto A, Orimo S, Udovic T J. Liquid-like Ionic Conduction in Solid Lithium and Sodium Monocarba-closo-Decaborates Near or at Room Temperature[J]. Adv. Energy Mater., 2016,61502237. doi: 10.1002/aenm.201502237

    61. [61]

      Li S H, Qiu P T, Kang J X, Shi Z P, Zhang Y C, Ma Y M, Chen X N. Halogenated Sodium/Lithium Monocarba-closo-Decaborates: Synthe- ses, Characterization, and Solid - State Ionic Conductivity[J]. Mater. Chem. Front., 2021,5:8037-8046. doi: 10.1039/D1QM01066B

    62. [62]

      Wu H, Tang W S, Zhou W, Tarver J D, Stavila V, Brown C M, Udovic T J. The Low-Temperature Structural Behavior of Sodium 1- Carba-closo-Decaborate: NaCB9H10[J]. J. Solid State Chem., 2016,243:162-167. doi: 10.1016/j.jssc.2016.08.024

    63. [63]

      Sethio D, Daku L M L, Hagemann H. Computational Study of the Vibrational Spectroscopy Properties of Boron-Hydrogen Compounds: Mg(B3H8)2, CCB9H10- and CB11H12-[J]. Int. J. Hydrog. Energy, 2017,42:22496-22501. doi: 10.1016/j.ijhydene.2017.03.044

    64. [64]

      Soloninin A V, Dimitrievska M, Skoryunov R V, Babanova O A, Skripov A V, Tang W S, Stavila V, Orimo S, Udovic T J. Comparison of Anion Reorientational Dynamics in MCB9H10 and M2B10H10 (M= Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies[J]. J. Phys. Chem. C, 2016,121:1000-1012.

    65. [65]

      Hayashi A, Noi K, Sakuda A, Tatsumisago M. Superionic Glass- Ceramic Electrolytes for Room - Temperature Rechargeable Sodium Batteries[J]. Nat. Commun., 2012,3856. doi: 10.1038/ncomms1843

    66. [66]

      Tang W S, Matsuo M, Wu H, Stavila V, Unemoto A, Orimo S, Udovic T J. Stabilizing Lithium and Sodium Fast - Ion Conduction in Solid Polyhedral - Borate Salts at Device - Relevant Temperatures[J]. Energy Storage Mater., 2016,4:79-83. doi: 10.1016/j.ensm.2016.03.004

    67. [67]

      Paskevicius M, Hansen B R S, Jorgensen M, Richter B, Jensen T R. Multifunctionality of Silver closo -Boranes[J]. Nat. Commun., 2017,815136. doi: 10.1038/ncomms15136

    68. [68]

      Yoshida K, Sato T, Unemoto A, Matsuo M, Ikeshoji T, Udovic T J, Orimo S. Fast Sodium Ionic Conduction in Na2B10H10 - Na2B12H12 Pseudo - Binary Complex Hydride and Application to a Bulk - Type All-Solid-State Battery[J]. Appl. Phys. Lett., 2017,110103901. doi: 10.1063/1.4977885

    69. [69]

      Duchene L, Kuhnel R S, Rentsch D, Remhof A, Hagemann H, Battaglia C. A Highly Stable Sodium Solid- State Electrolyte Based on a Dodeca/Deca - borate Equimolar Mixture[J]. Chem. Commun., 2017,53:4195-4198. doi: 10.1039/C7CC00794A

    70. [70]

      Duchêne L, Lunghammer S, Burankova T, Liao W C, Embs J P, Copéret C, Wilkening H M R, Remhof A, Hagemann H, Battaglia C. Ionic Conduction Mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo -Borate Solid - State Electrolyte: Interplay of Disorder and Ion - Ion Interactions[J]. Chem. Mater., 2019,31:3449-3460. doi: 10.1021/acs.chemmater.9b00610

    71. [71]

      Toyama N, Kim S, Oguchi H, Sato T, Takagi S, Tazawa M, Nogami G, Orimo S. Lithium Ion Conductivity of Complex Hydrides Incorpo- rating Multiple closo-Type Complex Anions[J]. J. Energy Chem., 2019,38:84-87. doi: 10.1016/j.jechem.2019.01.009

    72. [72]

      Duchêne L, Kühnel R S, Stilp E, Cuervo Reyes E, Remhof A, Hagemann H, Battaglia C. A Stable 3 V All-Solid-State Sodium-Ion Battery Based on a closo -Borate Electrolyte[J]. Energy Environ. Sci., 2017,10:2609-2615. doi: 10.1039/C7EE02420G

    73. [73]

      Duchêne L, Kim D H, Song Y B, Jun S, Moury R, Remhof A, Hagemann H, Jung Y S, Battaglia C. Crystallization of closo-Borate Electrolytes from Solution Enabling Infiltration into Slurry - Casted Porous Electrodes for All - Solid - State Batteries[J]. Energy Storage Mater., 2020,26:543-549. doi: 10.1016/j.ensm.2019.11.027

    74. [74]

      Gigante A, Duchene L, Moury R, Pupier M, Remhof A, Hagemann H. Direct Solution - Based Synthesis of Na4(B12H12) (B10H10) Solid Electrolyte[J]. ChemSusChem, 2019,12:4832-4837. doi: 10.1002/cssc.201902152

    75. [75]

      Tang W S, Yoshida K, Soloninin A V, Skoryunov R V, Babanova O A, Skripov A V, Dimitrievska M, Stavila V, Orimo S, Udovic T J. Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-Borate Salts[J]. ACS Energy Lett., 2016,1:659-664. doi: 10.1021/acsenergylett.6b00310

    76. [76]

      Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Arunkumar D, Kuwata N, Kawamura J, Orimo S. A Complex Hydride Lithium Superionic Conductor for High - Energy - Density All - Solid - State Lithium Metal Batteries[J]. Nat. Commun., 2019,101081. doi: 10.1038/s41467-019-09061-9

    77. [77]

      Kim S, Kisu K, Takagi S, Oguchi H, Orimo S. Complex Hydride Solid Electrolytes of the Li(CB9H10) - Li(CB11H12) Quasi - Binary System: Relationship between the Solid Solution and Phase Transition, and the Electrochemical Properties[J]. ACS Appl. Energy Mater., 2020,3:4831-4839. doi: 10.1021/acsaem.0c00433

    78. [78]

      Yang Z, Jin M Y, Cheng S, Ma X H, Qin Z, Zhang J K, Yang Y J, Guo Y H. Developing a High-Voltage Electrolyte Based on Conjuncto- Hydroborates for Solid - State Sodium Batteries[J]. J. Mater. Chem. A, 2022,10:7186-7194. doi: 10.1039/D1TA09386J

    79. [79]

      Fudan University. A Kind of Conjuncto - hydroborate as Fast Ionic Conductor and Its Preparation: CN202111217678.1. 2021-10-19.

    80. [80]

      PAN X X. Preparations and Applications in Electrolyte of Dodecahy- dro Dodecaborate, Tricosahydro Tetracosaborate and Tetracontahy- dro Hexacontaborate. Shanghai: Fudan University, 2020.

    81. [81]

      Xiao Y H, Jun K J, Wang Y, Miara L J, Tu Q S, Ceder G. Lithium Oxide Superionic Conductors Inspired by Garnet and NASICON Structures[J]. Adv. Energy Mater., 20212101437.

    82. [82]

      Thangadurai V, Narayanan S, Pinzaru D. Garnet - Type Solid - State Fast Li Ion Conductors for Li Batteries: Critical Review[J]. Chem. Soc. Rev., 2014,45:4714-4727.

    83. [83]

      Davis A L, Garcia M R, Wood K N, Kazyak E, Chen K H, Teeter G, Sakamoto J, Dasgupta N P. Electro-chemo-Mechanical Evolution of Sulfide Solid Electrolyte/Li Metal Interfaces: Operando Analysis and ALD Interlayer Effects[J]. J. Mater. Chem. A, 2020,8:6291-6302. doi: 10.1039/C9TA11508K

    84. [84]

      Li X N, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L. Progress and Perspectives of Halide-Based Lithium Conductors for All- Solid- State Batteries[J]. Energy Environ. Sci., 2020,13:1429-1461. doi: 10.1039/C9EE03828K

    85. [85]

      Yao P H, Yu H B, Ding Z Y, Liu P C, Lu J, Lavorgna M, Wu J W, Liu X J. Review on Polymer-Based Composite Electrolytes for Lithium Batteries[J]. Front. Chem., 2019,7:522-539. doi: 10.3389/fchem.2019.00522

    86. [86]

      Zhu Y Z, He X F, Mo Y F. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations[J]. ACS Appl. Mater. Interfaces, 2015,7:23685-23693. doi: 10.1021/acsami.5b07517

    87. [87]

      Cheng L, Crumlin E J, Chen W, Qiao R M, Hou H M, Lux S F, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W L, Cabana J, Richardson T, Chen G Y, Doeff M. The Origin of High Electrolyte- Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes[J]. Phys. Chem. Chem. Phys., 2014,16:18294-18300. doi: 10.1039/C4CP02921F

    88. [88]

      Tian Y S, Shi T, Richards W D, Li J C, Kim J C, Bo S H, Ceder G. Compatibility Issues Between Electrodes and Electrolytes in Solid- State Batteries[J]. Energy Environ. Sci., 2017,10:1150-1166. doi: 10.1039/C7EE00534B

    89. [89]

      Asakura R, Duchêne L, Kühnel R S, Remhof A, Hagemann H, Battaglia C. Electrochemical Oxidative Stability of Hydroborate- Based Solid - State Electrolytes[J]. ACS Appl. Energy Mater., 2019,2:6924-6930. doi: 10.1021/acsaem.9b01487

    90. [90]

      Tao Y C, Chen S J, Liu D, Peng G, Yao X Y, Xu X X. Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells[J]. J. Electrochem. Soc., 2015,163:96-101.

    91. [91]

      Suzuki K, Mashimo N, Ikeda Y, Yokoi T, Hirayama M, Kanno R. High Cycle Capability of All - Solid - State Lithium - Sulfur Batteries Using Composite Electrodes by Liquid-Phase and Mechanical Mixing[J]. ACS Appl. Energy Mater., 2018,1:2373-2377. doi: 10.1021/acsaem.8b00227

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(17)
  • Abstract views(1095)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return