Citation: Rong SHI, Xi-Gui WANG. Effect of Annealing Temperature on the Structure and Luminescence Properties of LiBaPO4: Eu3+ Phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2275-2282. doi: 10.11862/CJIC.2022.212 shu

Effect of Annealing Temperature on the Structure and Luminescence Properties of LiBaPO4: Eu3+ Phosphors

  • Corresponding author: Xi-Gui WANG, wangxg@imnu.edu.cn
  • Received Date: 2 April 2022
    Revised Date: 25 August 2022

Figures(9)

  • The LiBaPO4: Eu3+ phosphors were prepared by the sol-gel method, and the structure and luminescence properties of the phosphors were characterized by thermogravimetric-differential thermal analysis (TG-DTA), Fourier transformation infrared (IR) spectrum, X-ray diffraction (XRD), transmission electron microscope (TEM), and fluorescence spectrum. TG-DTA results showed that the LiBaPO4 phase can be formed upon 700 ℃. IR spectra confirmed the existence of PO43- ions. XRD results showed that temperature change can cause different degrees of cleavage of the diffraction peaks. Eu3+ doping concentration can affect the crystal phase of the sample, and the samples with a lower doping concentration appeared impurity, as the doping concentration increased, the sample was a pure phase of hexagonal crystals LiBaPO4. TEM showed that the material particles agglomerated to a certain extent with the increase in concentration. The fluorescence measurement results showed that LiBaPO4: Eu3+ had different optimal excitation wavelengths at different annealing temperatures and its dominant energy level transition is due to the differences in the crystal structure and coordination environment of the activator at different temperatures, and the concentration quenching caused by Eu3+ also varied. CIE calculation results showed that the color purity of the sample gradually improved with the increase of annealing temperature. LiBaPO4: Eu3+ can be effectively excited by 394 nm long-wave ultraviolet light, indicating its potential application in the field of white light-emitting diodes.
  • 加载中
    1. [1]

      Pucker G, Gatterer K, Fritzer H P, Bettinelli M, Ferrari M. Optical Investigation of Eu3+ in a Sodium Borosilicate Glass: Evidence for Two Different Site Distributions[J]. Phys. Rev. B, 1996,53(10):6225-6234. doi: 10.1103/PhysRevB.53.6225

    2. [2]

      Yan B, Su X Q. In Situ Chemical Coprecipitation Composition of Hybrid Precursors to Synthesize YPxV1-xO4: Eu3+ Micron Crystalline Phosphors[J]. Mater. Sci. Eng. B, 2005,116(2):196-201. doi: 10.1016/j.mseb.2004.10.004

    3. [3]

      Han B, Chen Y W, Liu B B, Zhang J Y. Solid State Synthesis and Luminescence Properties of Eu3+ Doped NaYGeO4 Phosphors[J]. Optik, 2021,242167177. doi: 10.1016/j.ijleo.2021.167177

    4. [4]

      Fan B, Han L M, Zhao W. Luminescence Properties of Novel Red-Emitting Phosphors Ba3B6Si2O16: Eu3+ for Near-UV Excited LED[J]. Optik, 2020,207164429. doi: 10.1016/j.ijleo.2020.164429

    5. [5]

      Mendhe M S, Bhure P P, Dhabale P C, Revankar S G, Puppalwar S P. Improvement of Luminescence Properties of LaSrAl3O7: Eu3+ Phosphor[J]. Mater. Today: Proc., 2019,15:633-637. doi: 10.1016/j.matpr.2019.04.131

    6. [6]

      Zhou X J, Xiong Z X, Xue H, Lin Y S, Song C X. Hydrothermal Synthesis and Photoluminescent Properties of Li2Sr 0.996SiO4: Pr0.0043+ Phosphors for White-LED Lightings[J]. J. Rare Earths, 2015,33(3):244-248. doi: 10.1016/S1002-0721(14)60410-5

    7. [7]

      Çirçir E, Kalaycioglu N O. Host-Sensitized Phosphorescence of Mn4+, Pr3+, 4+ and Nd3+ in MgAl2Si2O8[J]. Mater. Res. Bull., 2012,47(5):1138-1141. doi: 10.1016/j.materresbull.2012.02.009

    8. [8]

      Smet P F, Botterman J, Koen V, Korthout K, Poelman D. Persistent Luminescence in Nitride and Oxynitride Phosphors: A Review[J]. Opt. Mater., 2014,36(11):1913-1919. doi: 10.1016/j.optmat.2014.05.026

    9. [9]

      Mokoena P P, Gohain M, Bezuidenhoudt B, Swart H C, Ntwaeaborwa O M. Luminescent Properties and Particle Morphology of Ca3(PO4)2: Gd3+, Pr3+ Phosphor Powder Prepared by Microwave Assisted Synthesis[J]. J. Lumin., 2014,155:288-292. doi: 10.1016/j.jlumin.2014.06.058

    10. [10]

      LI W L. Preparation and Luminescence Characteristics of ABPO4 Based Phosphor for NUV-LED. Chongqing: Chongqing University, 2014: 9-10

    11. [11]

      Lin C C, Tang Y S, Hu S F, Liu R S. KBaPO4: Ln (Ln=Eu, Tb, Sm) Phosphors for UV Excitable White Light-Emitting Diodes[J]. J. Lumin., 2009,129(12):1682-1684. doi: 10.1016/j.jlumin.2009.03.022

    12. [12]

      Li P L, Wang Y Z, Wang Z J, Guo Q L, Yang Z P. Preparation and Luminescence Properties of LiBaPO4: Eu3+ Materials[J]. J. Lumin., 2011,32(7):665-669.

    13. [13]

      Puppalwar S P, Dhoble S J. Photoluminescence Properties of LiBaPO4: M3+ Phosphor for Near-UV Light-Emitting Diode (M=Eu and Dy)[J]. J. Lumin., 2015,30(6):745-750. doi: 10.1002/bio.2815

    14. [14]

      Game D N, Palan C B, Ingale N B, Omanwar S K. Synthesis and Photoluminescence Properties of Eu Doped LiBaPO4 Phosphors for Solid State Lighting[J]. J. Mater. Sci.: Mater. Electron., 2017,28(12):8777-8783. doi: 10.1007/s10854-017-6604-4

    15. [15]

      Keskin İ Ç, Türemiş M, Katı M İ, Gültekin S, Arslanlar Y T, Çetin A, Kibar R. Detailed Luminescence (RL, PL, CL, TL) Behaviors of Tb3+ and Dy3+ Doped LiMgPO4 Synthesized by Sol-Gel Method[J]. J. Lumin., 2020,225117276. doi: 10.1016/j.jlumin.2020.117276

    16. [16]

      Chengaiah T, Jamalaiah B C, Moorthy L R. Luminescence Properties of Eu3+-Doped Na3Gd(PO4)2 Red-Emitting Nanophosphors for LEDs[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014,133:495-500. doi: 10.1016/j.saa.2014.05.089

    17. [17]

      Wang L Y, Wang X, Song Q W, Xie T Y, Guo X Q, Wang N, Guang J, Han Y Y. Hydrothermal Synthesis for the Enhanced Red and Green Sr3Y(PO4)3: Eu3+, Tb3+ Phosphors[J]. Mod. Phys. Lett. B, 2019,33(5)1950048. doi: 10.1142/S0217984919500489

    18. [18]

      Doddoji R, Thummala C. Efficient Blue-White Color Luminescence with Near-Ultraviolet Excitation in Dy3+/Tm3+: Na3Gd(PO4)2 Nanophosphor for White LEDs[J]. Solid State Sci., 2020,101106126. doi: 10.1016/j.solidstatesciences.2020.106126

    19. [19]

      CHEN Y J, ZUO X Y, XIAO L J, GENG X J, YANG Y, ZHANG Z Q, SHEN Q, CAO S. Occupation and Spectral Properties of Eu3+ in Red Orange Phosphor NaBa1-xPO4: xEu3+[J]. Joumal of Chinese Ceramic Society, 2019,47(4):494-500.  

    20. [20]

      YAN Z Y. Preparation and Luminescence Properties of Tb 3+-Doped SiO2 Core-Shell Structured Materials. Xi'an: Northwestern University, 2011: 14-39

    21. [21]

      JING L Q, SUN X J, CAI W M, LI Q Q, FU H G, HOU H G, FAN N Y. Photoluminescence of Ce Doped TiO2 Nanoparticles and Its Photocatalytic Activity[J]. Acta Chim. Sinica, 2003,8:1241-1245.  

    22. [22]

      Tian S H, Li X, Hou Y B, Teng F. Facile Combustion Synthesis and Luminescent Properties of Eu3+ Doped Alkali-Alkaline Earth Metal Phosphate Red Phosphor[J]. Optik, 2018,157:429-434. doi: 10.1016/j.ijleo.2017.10.087

    23. [23]

      Balakrishna A, Reddy L, Ntwaeaborwa O M, Swart H C. Remarkable Influence of Alkaline Earth Ions on the Enhancement of Fluorescence from Eu3+ Ion Doped in Sodiumortho-Phosphate Phosphors[J]. J. Mol. Struct., 2019,1203127375.

    24. [24]

      Wu Z C, Liu J, Gong M L, Su Q. Optimization and Temperature-Dependent Luminescence of LiBaPO4: Eu2+ Phosphor for Near-UV Light-Emitting Diodes[J]. J. Electrochem. Soc., 2009,156(3).

    25. [25]

      Long Q W, Xia Y, Huang Y H, Liao S, Gao Y, Huang J M, Liang J Q, Cai J J. Na+ Induced Electric-Dipole Dominated Transition (5D07F2) of Eu3+ Emission in AMgPO4: Eu3+ (A=Li+, Na+, K+) Phosphors[J]. Mater. Lett., 2015,145:359-362. doi: 10.1016/j.matlet.2015.01.095

    26. [26]

      Zhang S, Nakai Y, Tsuboi T, Huang Y. Luminescence and Microstructural Features of Eu-Activated LiBaPO4 Phosphor[J]. Chem. Mater., 2011,23(5):1216-1224. doi: 10.1021/cm102854p

    27. [27]

      Lin C C, Liu R S, Tang Y S, Hu S F. Full-Color and Thermally Stable KSrPO4: Ln (Ln=Eu, Tb, Sm) Phosphors for White-Light-Emitting Diodes[J]. J. Electrochem. Soc., 2008,155(9):J248-J251. doi: 10.1149/1.2953591

    28. [28]

      Zhang S, Huang Y, Seo H J. The Spectroscopic Properties and Structural Occupation of Eu3+ Sites in LiMgPO4 Phosphor[J]. J. Electrochem. Soc., 2010,157(5).

  • 加载中
    1. [1]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    2. [2]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    3. [3]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    6. [6]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    7. [7]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    8. [8]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    9. [9]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    12. [12]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    13. [13]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    16. [16]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    17. [17]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    18. [18]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    19. [19]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    20. [20]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

Metrics
  • PDF Downloads(14)
  • Abstract views(1036)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return