Citation: Xiao-Yan LI, Zhan-Zhong WANG, Jun ZHANG, Wen-Jie ZHAO. In-Situ Bimetallic AlCo-Layered Double Hydroxide Nano-catalyst Supported on Foamed Nickel for Efficient Electrocatalysis of Oxygen Evolution Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1999-2005. doi: 10.11862/CJIC.2022.210 shu

In-Situ Bimetallic AlCo-Layered Double Hydroxide Nano-catalyst Supported on Foamed Nickel for Efficient Electrocatalysis of Oxygen Evolution Reaction

Figures(6)

  • The AlCo-LDH/NF (layered double hydroxide, LDH) catalyst was obtained by in situ growth on nickel foam (NF) by a one-step hydrothermal method. Benefitting from the transition metal-based LDH, as-synthesized AlCo-LDH in-situ grown on nickel foam (NF) electrocatalyst exhibited outstanding oxygen evolution reaction (OER) performance with an exceptionally low overpotential of 419 mV at 200 mA·cm-2 current density in an alkaline electrolyte, an extremely small Tafel slope (50.04 mV·dec-1) and excellent durability, which is due to its high surface area and optimized phase interfaces.
  • 加载中
    1. [1]

      Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong H N, Schlögl R, Mayrhofer K J J, Strasser P. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER)[J]. J. Am. Chem. Soc., 2015,137(40):13031-13040. doi: 10.1021/jacs.5b07788

    2. [2]

      Reier T, Oezaslan M, Strasser P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials[J]. ACS Catal., 2012,2(8):1765-1772. doi: 10.1021/cs3003098

    3. [3]

      Kibsgaard J, Chorkendorff I. Considerations for the Scaling-Up of Water Splitting Catalysts[J]. Nat. Energy, 2019,4(6):430-433. doi: 10.1038/s41560-019-0407-1

    4. [4]

      Kemppainen E, Bodin A, Sebok B, Pedersen T, Seger B, Mei B, Bae D, Vesborg P C K, Halme J, Hansen O, Lunda P D, Chorkendorff I. Scalability and Feasibility of Photoelectrochemical H2 Evolution: The Ultimate Limit of Pt Nanoparticle as an HER Catalyst[J]. Energy Environ. Sci., 2015,8(10):2991-2999. doi: 10.1039/C5EE02188J

    5. [5]

      Shao M F, Ning F Y, Zhao Y F, Zhao J W, Wei M, Evans D G, Duan X. Core-Shell Layered Double Hydroxide Microspheres with Tunable Interior Architecture for Supercapacitors[J]. Chem. Mater., 2012,24(6):1192-1197. doi: 10.1021/cm203831p

    6. [6]

      Zhang F S, Wang J W, Luo J, Liu R R, Zhang Z M, He C T, Lu T B. Extraction of Nickel from NiFe-LDH into Ni2P@ NiFe Hydroxide as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting[J]. Chem. Sci., 2018,9(5):1375-1384. doi: 10.1039/C7SC04569G

    7. [7]

      Zheng F Q, Zhang W F, Zhang X X, Zhang Y L, Chen W. Sub-2 nm Ultrathin and Robust 2D FeNi Layered Double Hydroxide Nanosheets Packed with 1D FeNi-MOFs for Enhanced Oxygen Evolution Electrocatalysis[J]. Adv. Funct. Mater., 2021,31(43)2103318. doi: 10.1002/adfm.202103318

    8. [8]

      Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M=P, S) for Overall Water Splitting[J]. Adv. Funct. Mater., 2016,26(19):3314-3323. doi: 10.1002/adfm.201505626

    9. [9]

      Zhao Y F, Jia X D, Waterhouse G I N, Wu L Z, Tung C H, O'Hare D, Zhang T R. Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production[J]. Adv. Energy Mater., 2016,6(6)1501974. doi: 10.1002/aenm.201501974

    10. [10]

      Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets[J]. Chem. Rev., 2012,112(7):4124-4155. doi: 10.1021/cr200434v

    11. [11]

      Zhou D J, Jia Y, Duan X X, Tang J L, Xu J, Liu D, Xiong X Y, Zhang J M, Luo J, Zheng L R, Liu B, Kuang Y, Sun X M, Duan X. Breaking the Symmetry: Gradient in NiFe Layered Double Hydroxide Nanoarrays for Efficient Oxygen Evolution[J]. Nano Energy, 2019,60:661-666. doi: 10.1016/j.nanoen.2019.04.014

    12. [12]

      Zhou D J, Li P S, Lin X, McKinley A, Kuang Y, Liu W, Lin W F, Sun X M, Duana X. Layered Double Hydroxide-Based Electrocatalysts for the Oxygen Evolution Reaction: Identification and Tailoring of Active Sites, and Superaerophobic Nanoarray Electrode Assembly[J]. Chem. Soc. Rev., 2021,50(15):8790-8817. doi: 10.1039/D1CS00186H

    13. [13]

      Hu W K, Liu Q, Lv T X, Zhou F, Zhong Y J. Impact of Interfacial CoOOH on OER Catalytic Activities and Electrochemical Behaviors of Bimetallic CoxNi-LDH Nanosheet Catalysts[J]. Electrochim. Acta, 2021,381138276. doi: 10.1016/j.electacta.2021.138276

    14. [14]

      Ma W, Ma R Z, Wu J H, Sun P Z, Liu X H, Zhou K C, Sasaki T. Development of Efficient Electrocatalysts via Molecular Hybridization of NiMn Layered Double Hydroxide Nanosheets and Graphene[J]. Nanoscale, 2016,8(19):10425-10432. doi: 10.1039/C6NR00988C

    15. [15]

      Wang Y Q, Tao S, Lin H, Han S B, Zhong W H, Xie Y S. NaBH4 Induces a High Ratio of Ni3+/Ni2+ Boosting OER Activity of the NiFe LDH Electrocatalyst[J]. RSC Adv., 2020,10(55):33475-33482. doi: 10.1039/D0RA06617F

    16. [16]

      Deng X L, Li H J, Liu Y, Huang J Z, Li Y B. Amorphous FeOOH Decorated Hierarchy Capillary-liked CoAl LDH Catalysts for Efficient Oxygen Evolution Reaction[J]. Int. J. Hydrog. Energy, 2021,46(41):21289-21297. doi: 10.1016/j.ijhydene.2021.03.224

    17. [17]

      Nagendra B, Rosely C V S, Leuteritz A, Reuter U, Gowd E B. Poly-propylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene[J]. ACS Omega, 2017,2(1):20-31. doi: 10.1021/acsomega.6b00485

    18. [18]

      Zheng W W, Sun S G, Xu Y Q, Yu R J, Li H J. Sulfidation of Hierarchical NiAl-LDH/Ni-MOF Composite for High-Performance Supercapacitor[J]. ChemElectroChem, 2019,6(13):3375-3382. doi: 10.1002/celc.201900687

    19. [19]

      Zhang W D, Hu Q G, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B-Environ., 2021,286119906. doi: 10.1016/j.apcatb.2021.119906

    20. [20]

      Li L, Hui K S, Hui K N, Cho Y R. Ultrathin Petal-like NiAl Layered Double Oxide/Sulfide Composites as an Advanced Electrode for High-Performance Asymmetric Supercapacitors[J]. J. Mater. Chem. A, 2017,5(37):19687-19696. doi: 10.1039/C7TA06119F

    21. [21]

      Zhang J, Han J X, Zhang J F, Tan X L, Zhao K L, Cao L X, Dong B H. Synthesis of CS@ NiFe LDHs Catalyst and Their Application in Electrocatalytic Oxygen Evolution[J]. Mater. Sci., 2020,10(5):422-432.

    22. [22]

      Zhao Y J, Fan G L, Li F. Recent Advances in Catalytic Properties of LDHs/Carbon Composite Materials[J]. Sci. Sin. Chim., 2017,47:396-407. doi: 10.1360/N032016-00237

    23. [23]

      Cai M K, Liu Q L, Xue Z Q, Li Y L, Fan Y N, Huang A P, Li M R, Croft M, Tyson T A, Ke Z F, Li G Q. Constructing 2D MOFs from 2D LDHs: A Highly Efficient and Durable Electrocatalyst for Water Oxidation[J]. J. Mater. Chem. A, 2020,8(1):190-195. doi: 10.1039/C9TA09397D

    24. [24]

      Li L, Hui K S, Hui K N, Xia Q X, Fu J J, Cho Y R. Facile Synthesis of NiAl Layered Double Hydroxide Nanoplates for High-Performance Asymmetric Supercapacitor[J]. J. Alloy. Compd., 2017,721:803-812. doi: 10.1016/j.jallcom.2017.06.062

    25. [25]

      Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions[J]. Adv. Mater., 2021,33(9)2007377. doi: 10.1002/adma.202007377

    26. [26]

      Marquez-Montes R A, Kawashima K, Son Y J, Weeks J A, Sun H H, Celio H, Ramos-Sánchez V H, Mullins C B. Mass Transport-Enhanced Electrodeposition of Ni-S-P-O Films on Nickel Foam for Electrochemical Water Splitting[J]. J. Mater. Chem. A, 2021,9(12):7736-7749. doi: 10.1039/D0TA12097A

    27. [27]

      You B, Sun Y. Innovative Strategies for Electrocatalytic Water Splitting[J]. Acc. Chem. Res., 2018,51(7):1571-1580. doi: 10.1021/acs.accounts.8b00002

    28. [28]

      Spöri C, Briois P, Nong H N, Reier T, Billard A, Kühl S, Teschner D, Strasser P. Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)[J]. ACS Catal., 2019,9(8):6653-6663. doi: 10.1021/acscatal.9b00648

    29. [29]

      Chen W B, Wang C S, Su S B, Wang H, Cai D D. Synthesis of ZIF-9(Ⅲ)/Co LDH Layered Composite from ZIF-9(Ⅰ) Based on Controllable Phase Transition for Enhanced Electrocatalytic Oxygen Evolution Reaction[J]. Chem. Eng. J., 2021,414128784. doi: 10.1016/j.cej.2021.128784

    30. [30]

      Rong M K, Zhong H, Wang S, Ma X, Cao Z F. La/Ce doped CoFe Layered Double Hydroxides (LDH) Highly Enhanced Oxygen Evolution Performance of Water Splitting[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2021,625126896. doi: 10.1016/j.colsurfa.2021.126896

  • 加载中
    1. [1]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    5. [5]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    6. [6]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    11. [11]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    16. [16]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    17. [17]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(36)
  • Abstract views(2485)
  • HTML views(878)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return