Citation: Xiao-Yan LI, Zhan-Zhong WANG, Jun ZHANG, Wen-Jie ZHAO. In-Situ Bimetallic AlCo-Layered Double Hydroxide Nano-catalyst Supported on Foamed Nickel for Efficient Electrocatalysis of Oxygen Evolution Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1999-2005. doi: 10.11862/CJIC.2022.210 shu

In-Situ Bimetallic AlCo-Layered Double Hydroxide Nano-catalyst Supported on Foamed Nickel for Efficient Electrocatalysis of Oxygen Evolution Reaction

Figures(6)

  • The AlCo-LDH/NF (layered double hydroxide, LDH) catalyst was obtained by in situ growth on nickel foam (NF) by a one-step hydrothermal method. Benefitting from the transition metal-based LDH, as-synthesized AlCo-LDH in-situ grown on nickel foam (NF) electrocatalyst exhibited outstanding oxygen evolution reaction (OER) performance with an exceptionally low overpotential of 419 mV at 200 mA·cm-2 current density in an alkaline electrolyte, an extremely small Tafel slope (50.04 mV·dec-1) and excellent durability, which is due to its high surface area and optimized phase interfaces.
  • 加载中
    1. [1]

      Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong H N, Schlögl R, Mayrhofer K J J, Strasser P. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER)[J]. J. Am. Chem. Soc., 2015,137(40):13031-13040. doi: 10.1021/jacs.5b07788

    2. [2]

      Reier T, Oezaslan M, Strasser P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials[J]. ACS Catal., 2012,2(8):1765-1772. doi: 10.1021/cs3003098

    3. [3]

      Kibsgaard J, Chorkendorff I. Considerations for the Scaling-Up of Water Splitting Catalysts[J]. Nat. Energy, 2019,4(6):430-433. doi: 10.1038/s41560-019-0407-1

    4. [4]

      Kemppainen E, Bodin A, Sebok B, Pedersen T, Seger B, Mei B, Bae D, Vesborg P C K, Halme J, Hansen O, Lunda P D, Chorkendorff I. Scalability and Feasibility of Photoelectrochemical H2 Evolution: The Ultimate Limit of Pt Nanoparticle as an HER Catalyst[J]. Energy Environ. Sci., 2015,8(10):2991-2999. doi: 10.1039/C5EE02188J

    5. [5]

      Shao M F, Ning F Y, Zhao Y F, Zhao J W, Wei M, Evans D G, Duan X. Core-Shell Layered Double Hydroxide Microspheres with Tunable Interior Architecture for Supercapacitors[J]. Chem. Mater., 2012,24(6):1192-1197. doi: 10.1021/cm203831p

    6. [6]

      Zhang F S, Wang J W, Luo J, Liu R R, Zhang Z M, He C T, Lu T B. Extraction of Nickel from NiFe-LDH into Ni2P@ NiFe Hydroxide as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting[J]. Chem. Sci., 2018,9(5):1375-1384. doi: 10.1039/C7SC04569G

    7. [7]

      Zheng F Q, Zhang W F, Zhang X X, Zhang Y L, Chen W. Sub-2 nm Ultrathin and Robust 2D FeNi Layered Double Hydroxide Nanosheets Packed with 1D FeNi-MOFs for Enhanced Oxygen Evolution Electrocatalysis[J]. Adv. Funct. Mater., 2021,31(43)2103318. doi: 10.1002/adfm.202103318

    8. [8]

      Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z. Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M=P, S) for Overall Water Splitting[J]. Adv. Funct. Mater., 2016,26(19):3314-3323. doi: 10.1002/adfm.201505626

    9. [9]

      Zhao Y F, Jia X D, Waterhouse G I N, Wu L Z, Tung C H, O'Hare D, Zhang T R. Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production[J]. Adv. Energy Mater., 2016,6(6)1501974. doi: 10.1002/aenm.201501974

    10. [10]

      Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets[J]. Chem. Rev., 2012,112(7):4124-4155. doi: 10.1021/cr200434v

    11. [11]

      Zhou D J, Jia Y, Duan X X, Tang J L, Xu J, Liu D, Xiong X Y, Zhang J M, Luo J, Zheng L R, Liu B, Kuang Y, Sun X M, Duan X. Breaking the Symmetry: Gradient in NiFe Layered Double Hydroxide Nanoarrays for Efficient Oxygen Evolution[J]. Nano Energy, 2019,60:661-666. doi: 10.1016/j.nanoen.2019.04.014

    12. [12]

      Zhou D J, Li P S, Lin X, McKinley A, Kuang Y, Liu W, Lin W F, Sun X M, Duana X. Layered Double Hydroxide-Based Electrocatalysts for the Oxygen Evolution Reaction: Identification and Tailoring of Active Sites, and Superaerophobic Nanoarray Electrode Assembly[J]. Chem. Soc. Rev., 2021,50(15):8790-8817. doi: 10.1039/D1CS00186H

    13. [13]

      Hu W K, Liu Q, Lv T X, Zhou F, Zhong Y J. Impact of Interfacial CoOOH on OER Catalytic Activities and Electrochemical Behaviors of Bimetallic CoxNi-LDH Nanosheet Catalysts[J]. Electrochim. Acta, 2021,381138276. doi: 10.1016/j.electacta.2021.138276

    14. [14]

      Ma W, Ma R Z, Wu J H, Sun P Z, Liu X H, Zhou K C, Sasaki T. Development of Efficient Electrocatalysts via Molecular Hybridization of NiMn Layered Double Hydroxide Nanosheets and Graphene[J]. Nanoscale, 2016,8(19):10425-10432. doi: 10.1039/C6NR00988C

    15. [15]

      Wang Y Q, Tao S, Lin H, Han S B, Zhong W H, Xie Y S. NaBH4 Induces a High Ratio of Ni3+/Ni2+ Boosting OER Activity of the NiFe LDH Electrocatalyst[J]. RSC Adv., 2020,10(55):33475-33482. doi: 10.1039/D0RA06617F

    16. [16]

      Deng X L, Li H J, Liu Y, Huang J Z, Li Y B. Amorphous FeOOH Decorated Hierarchy Capillary-liked CoAl LDH Catalysts for Efficient Oxygen Evolution Reaction[J]. Int. J. Hydrog. Energy, 2021,46(41):21289-21297. doi: 10.1016/j.ijhydene.2021.03.224

    17. [17]

      Nagendra B, Rosely C V S, Leuteritz A, Reuter U, Gowd E B. Poly-propylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene[J]. ACS Omega, 2017,2(1):20-31. doi: 10.1021/acsomega.6b00485

    18. [18]

      Zheng W W, Sun S G, Xu Y Q, Yu R J, Li H J. Sulfidation of Hierarchical NiAl-LDH/Ni-MOF Composite for High-Performance Supercapacitor[J]. ChemElectroChem, 2019,6(13):3375-3382. doi: 10.1002/celc.201900687

    19. [19]

      Zhang W D, Hu Q G, Wang L L, Gao J, Zhu H Y, Yan X D, Gu Z G. In-Situ Generated Ni-MOF/LDH Heterostructures with Abundant Phase Interfaces for Enhanced Oxygen Evolution Reaction[J]. Appl. Catal. B-Environ., 2021,286119906. doi: 10.1016/j.apcatb.2021.119906

    20. [20]

      Li L, Hui K S, Hui K N, Cho Y R. Ultrathin Petal-like NiAl Layered Double Oxide/Sulfide Composites as an Advanced Electrode for High-Performance Asymmetric Supercapacitors[J]. J. Mater. Chem. A, 2017,5(37):19687-19696. doi: 10.1039/C7TA06119F

    21. [21]

      Zhang J, Han J X, Zhang J F, Tan X L, Zhao K L, Cao L X, Dong B H. Synthesis of CS@ NiFe LDHs Catalyst and Their Application in Electrocatalytic Oxygen Evolution[J]. Mater. Sci., 2020,10(5):422-432.

    22. [22]

      Zhao Y J, Fan G L, Li F. Recent Advances in Catalytic Properties of LDHs/Carbon Composite Materials[J]. Sci. Sin. Chim., 2017,47:396-407. doi: 10.1360/N032016-00237

    23. [23]

      Cai M K, Liu Q L, Xue Z Q, Li Y L, Fan Y N, Huang A P, Li M R, Croft M, Tyson T A, Ke Z F, Li G Q. Constructing 2D MOFs from 2D LDHs: A Highly Efficient and Durable Electrocatalyst for Water Oxidation[J]. J. Mater. Chem. A, 2020,8(1):190-195. doi: 10.1039/C9TA09397D

    24. [24]

      Li L, Hui K S, Hui K N, Xia Q X, Fu J J, Cho Y R. Facile Synthesis of NiAl Layered Double Hydroxide Nanoplates for High-Performance Asymmetric Supercapacitor[J]. J. Alloy. Compd., 2017,721:803-812. doi: 10.1016/j.jallcom.2017.06.062

    25. [25]

      Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions[J]. Adv. Mater., 2021,33(9)2007377. doi: 10.1002/adma.202007377

    26. [26]

      Marquez-Montes R A, Kawashima K, Son Y J, Weeks J A, Sun H H, Celio H, Ramos-Sánchez V H, Mullins C B. Mass Transport-Enhanced Electrodeposition of Ni-S-P-O Films on Nickel Foam for Electrochemical Water Splitting[J]. J. Mater. Chem. A, 2021,9(12):7736-7749. doi: 10.1039/D0TA12097A

    27. [27]

      You B, Sun Y. Innovative Strategies for Electrocatalytic Water Splitting[J]. Acc. Chem. Res., 2018,51(7):1571-1580. doi: 10.1021/acs.accounts.8b00002

    28. [28]

      Spöri C, Briois P, Nong H N, Reier T, Billard A, Kühl S, Teschner D, Strasser P. Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)[J]. ACS Catal., 2019,9(8):6653-6663. doi: 10.1021/acscatal.9b00648

    29. [29]

      Chen W B, Wang C S, Su S B, Wang H, Cai D D. Synthesis of ZIF-9(Ⅲ)/Co LDH Layered Composite from ZIF-9(Ⅰ) Based on Controllable Phase Transition for Enhanced Electrocatalytic Oxygen Evolution Reaction[J]. Chem. Eng. J., 2021,414128784. doi: 10.1016/j.cej.2021.128784

    30. [30]

      Rong M K, Zhong H, Wang S, Ma X, Cao Z F. La/Ce doped CoFe Layered Double Hydroxides (LDH) Highly Enhanced Oxygen Evolution Performance of Water Splitting[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2021,625126896. doi: 10.1016/j.colsurfa.2021.126896

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    7. [7]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(26)
  • Abstract views(1472)
  • HTML views(640)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return