Citation: Xin BU, Si-Jie BAO, Xiang-Feng CHU, Shi-Ming LIANG, Chun-Shui WANG, Yu-Ying BAI. Preparation and Gas-Sensing Properties of MoS2/Cd2SnO4 Composite Materials[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2173-2180. doi: 10.11862/CJIC.2022.209 shu

Preparation and Gas-Sensing Properties of MoS2/Cd2SnO4 Composite Materials

Figures(8)

  • Cd2SnO4 was prepared by hydrothermal-calcination method and a series of MoS2/Cd2SnO4 composite materials were prepared by ultrasonic mixing method. To analyze the structures and morphologies of the Cd2SnO4 and MoS2/Cd2SnO4 composite materials, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy were used. The effect of the doped amount of MoS2 on the gas sensing properties of MoS2/Cd2SnO4 composite materials was investigated. The results showed that when the mass ratio of MoS2 to Cd2SnO4 was 2.5%, the response of the gas sensor of MoS2/Cd2SnO4 composite material to 100 μL·L-1 formaldehyde vapor at 170 ℃ was 40.0 and the detection limit reached 0.1 μL·L-1.
  • 加载中
    1. [1]

      Cogliano V J, Grosse Y, Baan R A, Straif K, Secretan M B, Ghissassi F E. Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1-tert-Butoxy-2-propanol[J]. Environ. Health Perspect., 2005,113(9):1205-1208. doi: 10.1289/ehp.7542

    2. [2]

      Nielsen G D, Larsen S T, Wolkoff P. Re - evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk Assessment[J]. Arch. Toxicol., 2017,91(1):35-61. doi: 10.1007/s00204-016-1733-8

    3. [3]

      Zhang H M, Zheng Z, Yu T, Liu C, Qian H, Li J G. Seasonal and Diurnal Patterns of Outdoor Formaldehyde and Impacts on Indoor Environments and Health[J]. Environ. Res., 2022,205112550. doi: 10.1016/j.envres.2021.112550

    4. [4]

      Wei K, Ma L, Ma G, Ji C D, Yin M Z. A Two-Step Responsive Colorimetric Probe for Fast Detection of Formaldehyde in Weakly Acidic Environment[J]. Dyes Pigment., 2019,165:294-300. doi: 10.1016/j.dyepig.2019.02.026

    5. [5]

      Sun M S, Wang F M, Liu W, Cai W F, Zhang X B. Novel Application of Gas Chromatography in Measurement of Gas Flow Rate[J]. Flow Meas. Instrum., 2016,50:245-251. doi: 10.1016/j.flowmeasinst.2016.07.006

    6. [6]

      Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Electrochemical Biosensor for the Detection of Formaldehyde Based on Enzyme Immobilization in Mesoporous Silica Materials[J]. Sens. Actuators B - Chem., 2008,135:268-275. doi: 10.1016/j.snb.2008.08.025

    7. [7]

      Yuan Z Y, Yang C, Meng F L. Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High - Performance Formaldehyde Detection: A Review[J]. Chemosensors, 2021,9(7)179. doi: 10.3390/chemosensors9070179

    8. [8]

      Umar A, Ibrahim A A, Nakate U T, Albargi H, Alsaiari M A, Ahmed F, Alharthi F A, Alghamdi A A, Al-Zaqri N. Fabrication and Characterization of CuO Nanoplates Based Sensor Device for Ethanol Gas Sensing Application[J]. Chem. Phys. Lett., 2021,763138204. doi: 10.1016/j.cplett.2020.138204

    9. [9]

      Li Z W. Supersensitive and Superselective Formaldehyde Gas Sensor Based on NiO Nanowires[J]. Vacuum, 2017,143:50-53. doi: 10.1016/j.vacuum.2017.05.038

    10. [10]

      Meng D, Liu D Y, Wang G S, San X G, Shen Y B, Jin Q, Meng F L. CuO Hollow Microspheres Self-Assembled with Nanobars: Synthesis and Their Sensing Properties to Formaldehyde[J]. Vacuum, 2017,144:272-280. doi: 10.1016/j.vacuum.2017.08.013

    11. [11]

      Wang S M, Xiao C H, Wang P, Li Z F, Xiao B X, Zhao R, Yang T Y, Zhang M Z. Co3O4 Hollow Nanotubes: Facile Synthesis and Gas Sensing Properties[J]. Mater. Lett., 2014,137(15):289-292.

    12. [12]

      Bel-Hadi-Tahar R. Structural and Electro-Optical Properties of Sol- Gel Processed Cd2SnO4 Powder and Nanocrystalline Films[J]. Thin Solid Films, 2017,626:85-93. doi: 10.1016/j.tsf.2017.02.031

    13. [13]

      Wu X, Asher S, Levi D H, King D E, Yan Y, Gessert T A, Sheldon P. Interdiffusion of CdS and Zn2SnO4 Layers and Its Application in CdS/CdTe Polycrystalline Thin - Film Solar Cells[J]. J. Appl. Phys., 2001,89:4564-4569. doi: 10.1063/1.1351539

    14. [14]

      Coutts T J, Young D L, Li X, Mulligan W P, Wu X. Search for Improved Transparent Conducting Oxides: A Fundamental Investigation of CdO, Cd2SnO4, and Zn2SnO4[J]. J. Vac. Sci. Technol. A, 2000,18:2646-2660.

    15. [15]

      Sá B, Zito C, Perfecto T, Volanti D. Porous ZnSnO3 Nanocubes as a Triethylamine Sensor[J]. Sens. Actuators B-Chem., 2021,338129869. doi: 10.1016/j.snb.2021.129869

    16. [16]

      Wang Z D, Zou T, Xing X X, Zhao R J, Wang Z Z, Yang Y, Wang Y D. CdIn 2O4 Nanoporous Thin Film Gas - Sensor for Formaldehyde Detection[J]. Physica E, 2018,103:18-24. doi: 10.1016/j.physe.2018.05.018

    17. [17]

      WANG C H, LIU G X, YIN J Y. Preparation by Hydrothermal Method and Gas Sensing Properties of Cd2SnO4[J]. New Chemical Materials, 2012,40(6):108-110. doi: 10.3969/j.issn.1006-3536.2012.06.035

    18. [18]

      TIAN F S, LIU Y L. Preparation and Gas Sensing Properties of Nano- Au Modified Cd2SnO4 Composites[J]. Chemical Sensors, 2019,39(2):42-47.  

    19. [19]

      Yu L M, Guo F, Liu S, Qi J L, Yin M L, Yang B, Liu Z Y, Fan X H. Hierarchical 3D Flower-like MoS2 Spheres: Post-thermal Treatment in Vacuum and Their NO2 Sensing Properties[J]. Mater. Lett., 2016,183:122-126. doi: 10.1016/j.matlet.2016.07.086

    20. [20]

      Kim Y, Kang S, Oh N, Lee H, Lee S, Park J, Kim H. Improved Sensitivity in Schottky Contacted Two-Dimensional MoS2 Gas Sensor[J]. ACS Appl. Mater. Interfaces, 2019,11:38902-38909. doi: 10.1021/acsami.9b10861

    21. [21]

      Choi G J, Le Q V, Choi K S, Kwon K C, Jang H W, Gwag J S, Kim S Y. Polarized Light - Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer[J]. Adv. Mater., 2017,291702598. doi: 10.1002/adma.201702598

    22. [22]

      Koh E W K, Chiu C H, Lim Y K, Zhang Y W, Pan H. Hydrogen Adsorption on and Diffusion through MoS2 Monolayer: First- Principles Study[J]. Int. J. Hydrog. Energy, 2012,37:14323-14328. doi: 10.1016/j.ijhydene.2012.07.069

    23. [23]

      Yue Q, Shao Z Z, Chang S L, Li J B. Adsorption of Gas Molecules on Monolayer MoS2 and Effect of Applied Electric Field[J]. Nanoscale Res. Lett., 2013,8425. doi: 10.1186/1556-276X-8-425

    24. [24]

      Ikram M, Liu Y, Lv H, Liu L J, Rehman A U, Kan K, Zhang W J, He L, Wang Y, Wang R H, Shi K Y. 3D-Multilayer MoS2 Nanosheets Vertically Grown on Highly Mesoporous Cubic In2O3 for High- Performance Gas Sensing at Room Temperature[J]. Appl. Surf. Sci., 2019,466:1-11. doi: 10.1016/j.apsusc.2018.10.018

    25. [25]

      Zhang J H, Li T T, Guo J Y, Hu Y Q, Zhang D Z. Two-Step Hydrothermal Fabrication of CeO2 -Loaded MoS2 Nanoflowers for Ethanol Gas Sensing Application[J]. Appl. Surf. Sci., 2021,568150942. doi: 10.1016/j.apsusc.2021.150942

    26. [26]

      Sharma S, Kumar A, Singh N, Kaur D. Excellent Room Temperature Ammonia Gas Sensing Properties of n-MoS2/p-CuO Heterojunction Nanoworms[J]. Sens. Actuators B-Chem., 2018,275:499-507. doi: 10.1016/j.snb.2018.08.046

    27. [27]

      JIAO C, JIANG Y F, WEN H R, CHU X F, LIANG S M. Preparation of Flake CdGa2O4 Nanomaterials and Their Formaldehyde Gas- Sensitive Properties[J]. Rare Metal Mat. Eng., 2021,50(9):3335-3341.  

    28. [28]

      Gao X, Zhang T. An Overview: Facet-Dependent Metal Oxide Semiconductor Gas Sensors[J]. Sens. Actuators B-Chem., 2018,277:604-633. doi: 10.1016/j.snb.2018.08.129

    29. [29]

      Yuan Z, Zhao Q N, Xie C Y, Liang J G, Duan X H, Duan Z H, Li S R, Jiang Y D, Tai H L. Gold - Loaded Tellurium Nanobelts Gas Sensors for ppt - Level NO2 Detection at Room Temperature[J]. Sens. Actuators B-Chem., 2022,355131300. doi: 10.1016/j.snb.2021.131300

    30. [30]

      AI-Sofiany S M, Hassan H E. Radiation Treatment of Cd2SnO4 Thin Films Prepared by RF Sputtering with Different Preparation Conditions[J]. J. Alloy. Compd., 2015,651:149-156. doi: 10.1016/j.jallcom.2015.08.042

    31. [31]

      Kumaravel R, Ramamurthi K. Structural. Optical and Electrical Properties of In - Doped Cd2SnO4 Thin Films by Spray Pyrolysis Method[J]. J. Alloy. Compd., 2011,509:4390-4393. doi: 10.1016/j.jallcom.2011.01.039

    32. [32]

      Chen P Y, Xu W S, Gao Y K, Warner J H, Castell M R. Epitaxial Growth of Monolayer MoS2 on SrTiO3 Single Crystal Substrates for Application in Nanoelectronics[J]. ACS Appl. Energy Mater., 2018,11:1-51.

    33. [33]

      Ikram M, Liu L J, Liu Y, Ullah M, Ma L F, Bakhtiar S H B, Wu H Y, Yu H T, Wang R H, Shi K Y. Controllable Synthesis of MoS2@MoO2 Nanonetworks for Enhanced NO2 Room Temperature Sensing in Air[J]. Nanoscale, 2019,118554. doi: 10.1039/C9NR00137A

    34. [34]

      WU H Y, GAN Z Q, CHU X F, LIANG S M, HE L F. Preparation and Gas-Sensing Properties of One-Dimensional Ga2O3/SnO2 Nanofibers[J]. Chinese J. Inorg. Chem., 2020,36(2):309-316.  

    35. [35]

      Sui N, Zhang P, Zhou T T, Zhang T. Selective ppb-Level Ozone Gas Sensor Based on Hierarchical Branch - like In 2O3 Nanostructure[J]. Sens. Actuators B-Chem., 2021,336129612. doi: 10.1016/j.snb.2021.129612

    36. [36]

      Zhao J P, Yuan Z Y, Ji H Y, Zhang H, Meng F L, Gao H L. Highly Sensitive Ethanol Sensor Based on Two-Dimensional Layered Mesoporous In2O3 Nanosheets[J]. IEEE Trans. Nanotechnol., 2020,9:486-491.

    37. [37]

      Afsar M F, Rafiq M A, Tok A I Y, Li C, Cheng B W, Xu X L. Humidity and Selective Oxygen Detection by Ag2S Nanoparticles Gas Sensor[J]. J. Mater. Sci. Mater. Electron., 2019,30:10117-10127. doi: 10.1007/s10854-019-01347-4

    38. [38]

      Ma Y T, Ma S Y, Tang J, Wu Z G, Shi J, Zhao Y, Wang Y, Pei S T. Constructed Heterostructured SnS@MoO3 Hollow Nanotubes and Detected Sensing Properties towards TEA[J]. Vacuum, 2021,184109939. doi: 10.1016/j.vacuum.2020.109939

    39. [39]

      Li X, Zhang Y, Bhattacharya A, Chu X F, Liang S M, Zeng D W. The Formaldehyde Sensing Properties of CdGa2O4 Prepared by Coprecipitation Method[J]. Sens. Actuators B-Chem., 2021,343129834. doi: 10.1016/j.snb.2021.129834

    40. [40]

      Zhou T T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors[J]. Small Methods, 2021,5(9)2100515. doi: 10.1002/smtd.202100515

  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(5)
  • Abstract views(481)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return