Citation: Yu-Han ZHOU, Xiang-Yun FENG, Jia ZHU, Li-Gang XU, Run-Feng CHEN. Preparation and Stability Strategies of Inverted Tin-Based Perovskite Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1889-1907. doi: 10.11862/CJIC.2022.208 shu

Preparation and Stability Strategies of Inverted Tin-Based Perovskite Solar Cells

Figures(10)

  • In recent years, perovskite solar cells (PSCs) have achieved rapid development with the maximum certified power conversion efficiency (PCE) up to 25.7%, which is comparable with the advances obtained for silicon and thin-film solar cells. However, the involvement of lead, which is a cumulative toxicant to human bodies, hampers the pace of their future commercial application. Therefore, it is crucial to seek a new path to reduce or eliminate Pb from PSCs and replace it with other environmentally friendly elements. Recently, the development of lead-free PSCs has attracted great attentions. Tin-based perovskite materials with excellent photoelectric properties are thus by far the most promising alternative. The p-i-n inverted tin-based PSCs have developed rapidly in recent years, which represented an important breakthrough in the field. Their main advantages include low-temperature fabrication, cost-effectiveness, and suppressed hysteresis behavior, alongside a competitive power conversion efficiency of up to 14.8%. Though numerous research efforts have been devoted to inverted Sn-based PSCs, the PCE of these devices still lag far behind Pb-based PSCs. The rapid development of inverted Sn-based PSCs prompted us to review the current progress of inverted p-i-n Sn-based PSCs, focusing mainly on the aspects involving on features p-i-n Sn-based PSCs, interface layers, properties of Sn perovskites, and fabrication of a high-quality Sn perovskite active layer, highlighting the obstacles to further progress and opportunities for future work.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J. Am. Chem. Soc., 2009,131:6050-6051. doi: 10.1021/ja809598r

    2. [2]

      Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell[J]. Nanoscale, 2011,3:4088-4093. doi: 10.1039/c1nr10867k

    3. [3]

      Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells[J]. Nature, 2013,499:316-319. doi: 10.1038/nature12340

    4. [4]

      Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Sang I S. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells[J]. Nature, 2015,517:476-480. doi: 10.1038/nature14133

    5. [5]

      Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok I S. High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange[J]. Science, 2015,348:1234-1237. doi: 10.1126/science.aaa9272

    6. [6]

      XU L G, QIU W, CHEN R F, HUANG W. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. - Chim. Sin., 2018,34(1):36-48.  

    7. [7]

      Zhang Z Q, Fang Z, Guo T H, Zhao R, Deng Z Q, Zhang J, Shang M H, Liu X H, Liu J, Huang L, Hu Z Y, Zhu Y J, Han L Y. Robust Heterojunction to Strengthen the Performances of FAPbI3 Perovskite Solar Cells[J]. Chem. Eng. J., 2022,432134311. doi: 10.1016/j.cej.2021.134311

    8. [8]

      Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. All-Inorganic Perovskite Solar Cells[J]. J. Am. Chem. Soc., 2016,138:15829-15832. doi: 10.1021/jacs.6b10227

    9. [9]

      Liu X, Cheng Y H, Liu C, Zhang T X, Zhang N D, Zhang S W, Chen J S, Xu Q H, Ouyang J Y, Gong H. 20.7% Highly Reproducible Inverted Planar Perovskite Solar Cells with Enhanced Fill Factor and Eliminated Hysteresis[J]. Energy Environ. Sci., 2019,12:1622-1633. doi: 10.1039/C9EE00872A

    10. [10]

      Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan W S, Jin Z. Pseudohalide Substitution and Potassium Doping in FA0.98K0.02Pb(SCN)2I for High - Stability Hole - Conductor - Free Perovskite Solar Cells[J]. J. Power Sources, 2021,494229781. doi: 10.1016/j.jpowsour.2021.229781

    11. [11]

      Xu L G, Li Y F, Zhang C, Liu Y, Zheng C, Lv W X, Li M G, Chen Y H, Huang W, Chen R F. Improving the Efficiency and Stability of Inverted Perovskite Solar Cells by CuSCN-Doped PEDOT-PSS[J]. Sol. Energy Mater. Sol. Cells, 2020,206110316. doi: 10.1016/j.solmat.2019.110316

    12. [12]

      Zheng X P, Hou Y, Bao C. X, Yin J, Yuan F L, Huang Z R, Song K P, Liu J K, Troughton J, Gasparini N, Zhou C, Lin Y B, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M Y, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M. Managing Grains and Interfaces via Ligand Anchoring Enables 22.3%-Efficiency Inverted Perovskite Solar Cells[J]. Nat. Energy, 2020,5:131-140. doi: 10.1038/s41560-019-0538-4

    13. [13]

      Yang Y Q, Wu J H, Wang X B, Guo Q Y, Liu X P, Sun W H, Wei Y L, Huang Y F, Lan Z, Huang M L, Lin J M, Chen H W, Wei Z H. Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for High - Performance and Stable Perovskite Solar Cells[J]. Adv. Mater., 2019,321904347.

    14. [14]

      Wu S F, Zhang J, Li Z, Liu D J, Qin M C, Cheung S H, Lu X H, Lei D Y, So S K, Zhu Z H, Jen A K Y. Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells[J]. Joule, 2020,4:1248-1262. doi: 10.1016/j.joule.2020.04.001

    15. [15]

      Hao M M, Bai Y, Zeiske S, Ren L, Wang L X, Yuan Y B, Zarrabi N, Cheng N Y, Ghasemi M, Chen P, Lyu M, He D X, Yun J H, Du Y, Wang U, Ding S S, Armin A, Meredith P, Liu G, Cheng M M, Wang L Z. Ligand - Assisted Cation - Exchange Engineering for High-Efficiency Colloidal Cs1- xFAxPbI3 Quantum Dot Solar Cells with Reduced Phase Segregation[J]. Nat. Energy, 2020,5:79-88. doi: 10.1038/s41560-019-0535-7

    16. [16]

      Ren H, Yu S D, Chao L F, Xia Y D, Sun Y H, Zou S W, Li F, Niu T T, Yang Y G, Ju H X, Li B X, Du H Y, Gao X Y, Zhang J, Wang J P, Huang W. Efficient and stable Ruddlesden-Popper Perovskite Solar Cell with Tailored Interlayer Molecular Interaction[J]. Nat. Photonics, 2020,14:154-163. doi: 10.1038/s41566-019-0572-6

    17. [17]

      Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Gratzel M. Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency[J]. Adv. Mater., 2020,321907757. doi: 10.1002/adma.201907757

    18. [18]

      Best Research-Cell Efficiency Chart (NREL, 2021); https://www.nrel.gov/pv/cell-efficiency.html.

    19. [19]

      Yu F, Liu J, Huang J H, Xu P, Li C H, Zheng Y X, Tan H R, Zuo J L. Efficient and Stable Wide - Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate[J]. Sol. RRL, 2022,62100906.

    20. [20]

      Xu L G, Liu Y, Qiu W, Li Y F, Wang H, Li M G, Xian L J, Zheng C, Chen Y H, Chen R F. Conjugated Molecule Doping of Triphenylamine-Based Hole-Transport Layer for High-Performance Perovskite Solar Cells[J]. J. Power Sources, 2021,506230120. doi: 10.1016/j.jpowsour.2021.230120

    21. [21]

      Wu T H, Qin Z Z, Wang Y, Wu Y B, Chen W, Zhang S F, Cai M L, Dai S Y, Zhang J, Liu J, Zhou Z M, Xiao Liu, Segawa H, Tan H R, Tang Q W, Fang J F, Li Y W, Ding L M, Ning Z J, Qi Y B, Zhang Y Q, Han L Y. The Main Progress of Perovskite Solar Cells in 2020-2021[J]. Nano-Micro Lett., 2021,13152. doi: 10.1007/s40820-021-00672-w

    22. [22]

      Stoumpos C C, Kanatzidis M G. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors[J]. Acc. Chem. Res., 2015,48:2791-2802. doi: 10.1021/acs.accounts.5b00229

    23. [23]

      Ke W, Kanatzidis M G. Prospects for Low - Toxicity Lead - Free Perovskite Solar Cells[J]. Nat. Commun., 2019,10965. doi: 10.1038/s41467-019-08918-3

    24. [24]

      Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J. Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications[J]. Energy Environ. Sci., 2014,7:3061-3068. doi: 10.1039/C4EE01076K

    25. [25]

      Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Lead-Free Solid - State Organic - Inorganic Halide Perovskite Solar Cells[J]. Nat. Photonics, 2014,8:489-494. doi: 10.1038/nphoton.2014.82

    26. [26]

      Stoumpos C C, Frazer L, Clark D J, Kim Y S, Rhim S H, Freeman A J, Ketterson J B, Jang J I, Kanatzidis M G. Hybrid Germanium Iodide Perovskite Semiconductors Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties[J]. J. Am. Chem. Soc., 2015,137:6804-6819. doi: 10.1021/jacs.5b01025

    27. [27]

      Saparov B, Hong F, Sun J P, Duan H S, Meng W W, Cameron S, Hill I G, Yan Y F, Mitzi D B. Thin-Film Preparation and Characterization of Cs3Sb2I: A Lead - Free Layered Perovskite Semiconductor[J]. Chem. Mater., 2015,27:5622-5632. doi: 10.1021/acs.chemmater.5b01989

    28. [28]

      Park B W, Philippe B, Zhang X L, Rensmo H, Boschloo G, Johansson E M J. Bismuth Based Hybrid Perovskites A3Bi2I9 (A Methylammonium or Cesium) for Solar Cell Application[J]. Adv. Mater., 2015,27:6806-6813. doi: 10.1002/adma.201501978

    29. [29]

      Cortecchia D, Dewi H A, Yin J, Bruno A, Chen S, Baikie T, Boix P P, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Lead-Free MA2CuClxBr4-x Hybrid Perovskites[J]. Inorg. Chem., 2016,55:1044-1052. doi: 10.1021/acs.inorgchem.5b01896

    30. [30]

      Manser J S, Christians J A, Kamat P V. Intriguing Optoelectronic Properties of Metal Halide Perovskites[J]. Chem. Rev., 2016,116:12956-13088.

    31. [31]

      Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties[J]. Inorg. Chem., 2013,52:9019-9038. doi: 10.1021/ic401215x

    32. [32]

      Shockley W, Queisser H J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells[J]. J. Appl. Phys., 1961,32510. doi: 10.1063/1.1736034

    33. [33]

      Abate A. Perovskite Solar Cells Go Lead Free[J]. Joule, 2017,1:659-664. doi: 10.1016/j.joule.2017.09.007

    34. [34]

      Marshall K P, Walton R I, Hatton R A. Tin Perovskite Fullerene Planar Layer Photovoltaic Improving the Efficiency and Stability of Lead-Free Devices[J]. J. Mater. Chem. A, 2015,3:11631-11640. doi: 10.1039/C5TA02950C

    35. [35]

      Yu B B, Chen Z H, Zhu Y D, Wang Y Y, Han B, Chen G C, Zhang X S, Du Z, He Z B. Heterogeneous 2D/3D Tin - Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%[J]. Adv. Mater., 2021,332102055. doi: 10.1002/adma.202102055

    36. [36]

      Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A, Huang J S. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices[J]. Nat. Mater., 2015,14:193-198. doi: 10.1038/nmat4150

    37. [37]

      Chen B, Yang M J, Zheng X J, Wu C C, Li W L, Yan Y K, Bisquert J, Garcia-Belmonte G, Zhu K, Priya S. Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells[J]. J. Phys. Chem. Lett., 2015,6:4693-4700. doi: 10.1021/acs.jpclett.5b02229

    38. [38]

      Bai Y, Meng X Y, Yang S H. Interface Engineering for Highly Efficient and Stable Planar p - i - n Perovskite Solar Cells[J]. Adv. Energy Mater., 2018,81701883. doi: 10.1002/aenm.201701883

    39. [39]

      Xu J X, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M J, Jeon S, Ning Z J, McDowell J J, Kanjanaboos P, Sun J P, Lan X Z, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H. Perovskite-Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes[J]. Nat. Commun., 2015,67081. doi: 10.1038/ncomms8081

    40. [40]

      Shao Y C, Xiao Z G, Bi C, Yuan Y B, Huang J S. Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784

    41. [41]

      Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J. Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates[J]. Nat. Commun., 2013,42761. doi: 10.1038/ncomms3761

    42. [42]

      Liao W Q, Zhao D W, Yu Y, Grice C R, Wang C L, Cimaroli A J, Schulz P, Meng W W, Zhu K, Xiong R G. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies Up to 6.22%[J]. Adv. Mater., 2016,289333. doi: 10.1002/adma.201602992

    43. [43]

      Cui D Y, Liu X, Wu T H, Lin X S, Luo X H, Wu Y Z, Segawa H, Yang X D, Zhang Y Q, Wang Y B, Han L. Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution[J]. Adv. Funct. Mater., 2021,312100931. doi: 10.1002/adfm.202100931

    44. [44]

      Jiang X Y, Li H S, Zhou Q L, Wei Q, Wei M Y, Jiang L Z, Wang Z, Peng Z J, Wang F, Zang Z H, Xu K M, Hou Y, Teale S, Zhou W J, Si R, Gao X Y, Sargent E H, Ning Z J. One - Step Synthesis of SnI2·(DMSO)x Adducts for High -Performance Tin Perovskite Solar Cells[J]. J. Am. Chem. Soc., 2021,143:10970-10976. doi: 10.1021/jacs.1c03032

    45. [45]

      Shi J J, Xu X, Li D M, Meng Q B. Interfaces in Perovskite Solar Cells[J]. Small, 2015,11:2472-2486. doi: 10.1002/smll.201403534

    46. [46]

      Li M H, Shen P S, Wang K C, Guo T F, Chen P. Inorganic p -Type Contact Materials for Perovskite-Based Solar Cells[J]. J. Mater. Chem. A, 2015,3:9011-9019. doi: 10.1039/C4TA06425A

    47. [47]

      Moghe D, Wang L L, Traverse C J, Redoute A, Spomseller M, Brow P R, Bulovic V, Lunt R R. All Vapor-Deposited Lead-Free Doped CsSnBr3 Planar Solar Cells[J]. Nano Energy, 2016,28:469-474. doi: 10.1016/j.nanoen.2016.09.009

    48. [48]

      Fujihara T, Terakawa S, Matsushima T, Qin C, Yahiro M, Adachi C. Fabrication of High Coverage MASnI3 Perovskite Films for Stable, Planar Heterojunction Solar Cells[J]. J. Mater. Chem. C, 2017,5:1121-1127. doi: 10.1039/C6TC05069G

    49. [49]

      Ito S, Tanaka S, Vahlman H, Nishino H, And K M, Lund P. Carbon-Double - Bond - Free Printed Solar Cells from TiO2//CH3NH3PbI3/CuSCN//Au: Structural Control and Photoaging Effects. ChemPhysChem, 2014, 15: 1194-120

    50. [50]

      Wang T Y, Tai Q D, Guo X Y, Cao J P, Liu C K, Wang N X, Shen D, Zhu Y, Lee C S, Yan F. Highly Air - Stable Tin - Based Perovskite Solar Cells through Grain - Surface Protection by Gallic Acid[J]. ACS Energy Lett., 2020,5:1741-1749. doi: 10.1021/acsenergylett.0c00526

    51. [51]

      Cao J P, Tai Q D, You P, Tang G Q, Wang N X, Yan F. Enhanced Performance of Tin - Based Perovskite Solar Cells Induced by an Ammonium Hypophosphite Additive[J]. J. Mater. Chem. A, 2019,7:26580-26585. doi: 10.1039/C9TA08679J

    52. [52]

      Peng H T, Sun W H, Li Y L, Ye S Y, Rao H X, Yan W B, Zhou H P, Bian Z Q, Huang C H. Solution Processed Inorganic V2Ox as Interfacial Function Materials for Inverted Planar-Heterojunction Perovskite Solar Cells with Enhanced Efficiency[J]. Nano Res., 2016,9:2960-2971. doi: 10.1007/s12274-016-1181-z

    53. [53]

      Xu L G, Qian M Y, Zhang C, Lv W Z, Jin J B, Zhang J S, Zheng C, Li M G, Chen R F, Huang W. In Situ Construction of Gradient Heterojunction Using Organic VOx Precursor for Efficient and Stable Inverted Perovskite Solar Cells[J]. Nano Energy, 2020,67104244. doi: 10.1016/j.nanoen.2019.104244

    54. [54]

      Zuo C T, Ding L M. Solution - Processed Cu2 O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells[J]. Small., 2015,11:5528-5532. doi: 10.1002/smll.201501330

    55. [55]

      Li W Z, Dong H P, Guo X D, Li N W, Li J W, Niu G D, Wang L D. Graphene Oxide as Dual Functional Interface Modifier for Improving Wettability and Retarding Recombination in Hybrid Perovskite Solar Cells[J]. J. Mater. Chem. A, 2014,2:20105-20111. doi: 10.1039/C4TA05196C

    56. [56]

      Yeo J S, Kang R, Lee S, Jeon Y J, Myoung N S, Lee C L, Kim D Y, Yun J M, Seo Y H, Kim S S, Na S I. Highly Efficient and Stable Planar Perovskite Solar Cells with Reduced Graphene Oxide Nanosheets as Electrode Interlayer[J]. Nano Energy, 2015,12:96-104. doi: 10.1016/j.nanoen.2014.12.022

    57. [57]

      Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q. Efficient Planar Heterojunction Perovskite Solar Cells Employing Graphene Oxide as Hole Conductor[J]. Nanoscale, 2014,6:10505-10510. doi: 10.1039/C4NR03181D

    58. [58]

      Wang Y B, Wu T H, Barbaud J, Kong W Y, Cui D Y, Chen H, Yang X D, Han L Y. Stabilizing Heterostructures of Soft Perovskite Semiconductors[J]. Science, 2019,365:687-691. doi: 10.1126/science.aax8018

    59. [59]

      Liu X, Wang Y B, Xie F X, Yang X D, Han L Y. Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy - Level Mismatch[J]. ACS Energy Lett., 2018,3:1116-1121. doi: 10.1021/acsenergylett.8b00383

    60. [60]

      WANG M H, WAN L, GAO X Y, YUAN W B, FANG J F, TAO Y T, HUANG W. Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells[J]. Acta Chim. Sinica, 2019,77(8):741-750.  

    61. [61]

      Jiang X Y, Wang F, Wei Q, Li H S, Shang Y Q, Zhou W J, Wang C, Cheng P H, Chen Q, Chen L W, Ning Z J. Ultra-High Open-Circuit Voltage of Tin Perovskite Solar Cells via an Electron Transporting Layer Design[J]. Nat. Commun., 2020,111245. doi: 10.1038/s41467-020-15078-2

    62. [62]

      Ke C, Pan W, Yang W Q, Rui S, Luo D Y, Yang X Y, Tu Y G, Zhu R, Gong Q H. Low-Dimensional Perovskite Interlayer for Highly Efficient Lead - Free Formamidinium Tin Iodide Perovskite Solar Cells[J]. Nano Energy, 2018,49:411-418. doi: 10.1016/j.nanoen.2018.05.006

    63. [63]

      Ran C X, Xi J, Gao W Y, Yuan F, Lei T, Jiao B, Hou X, Wu Z X. Bilateral Interface Engineering toward Efficient 2D-3D Bulk Heterojunction Tin Halide Lead - Free Perovskite Solar Cells[J]. ACS Energy Lett., 2018,3:731-721.

    64. [64]

      Kamarudin M A, Hirotani D, Wang Z, Hamada K, Nishimura K, Shen Q, Toyoda T, Likubo S, Minemoto T, Yoshino K, Hayase S J. Suppression of Charge Carrier Recombination in Lead - Free Tin Halide Perovskite via Lewis Base Post-treatment[J]. Phys. Chem. Lett., 2019,1052775283.

    65. [65]

      Liu X, Wu T H, Chen J Y, Meng X Y, He X, Noda T, Chen H, Yang X D, Segawa H, Wang Y B, Han L Y. Templated Growth of FASnI3 Crystals for Efficient Tin Perovskite Solar Cells[J]. Energy Environ. Sci., 2020,13:2896-2902. doi: 10.1039/D0EE01845G

    66. [66]

      Liu M Z, Johnston M B, Snaith H J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition[J]. Nature, 2013,501:395-398. doi: 10.1038/nature12509

    67. [67]

      Shi Z J, Guo J, Chen Y H, Li Q, Pan Y F, Zhang H J, Xia Y D, Huang W. Lead-Free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications[J]. Adv. Mater., 2017,291605005. doi: 10.1002/adma.201605005

    68. [68]

      Yang S D, Fu W F, Zhang Z Q, Chen H Z, Li C Z. Recent Advances in Perovskite Solar Cells: Efficiency, Stability and Lead - Free Perovskite[J]. J. Mater. Chem. A, 2017,5:11462-11482. doi: 10.1039/C7TA00366H

    69. [69]

      Giustino F, Snaith H J. Toward Lead - Free Perovskite Solar Cells[J]. ACS Energy Lett., 2016,1:1233-1240. doi: 10.1021/acsenergylett.6b00499

    70. [70]

      Konstantakou M, Stergiopoulos T. A Critical Review on Tin Halide Perovskite Solar Cells[J]. J. Mater. Chem. A, 2017,5:11518-11549. doi: 10.1039/C7TA00929A

    71. [71]

      Lyu M, Yun J H, Chen P, Hao M M, Wang L Z. Addressing Toxicity of Lead: Progress and Applications of Low - Toxic Metal Halide Perovskites and Their Derivatives[J]. Adv. Energy Mater., 2017,71602512. doi: 10.1002/aenm.201602512

    72. [72]

      Liang L, Gao P. Lead - Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It Too?[J]. Adv. Sci., 2018,51700331. doi: 10.1002/advs.201700331

    73. [73]

      Filippetti A, Kahmann S, Caddeo C, Mattoni A, Saba M, Bosin A, Loi M A. Fundamentals of Tin Iodide Perovskites: A Promising Route to Highly Efficient, Lead-Free Solar Cells[J]. J. Mater. Chem. A, 2021,91181211826.

    74. [74]

      Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G. Carrier Diffusion Lengths of over 500 nm in Lead - Free Perovskite CH3NH3SnI3 Films[J]. J. Am. Chem. Soc., 2016,138:14750-14755. doi: 10.1021/jacs.6b09257

    75. [75]

      Cao J P, Yan F. Recent Progress in Tin - Based Perovskite Solar Cells[J]. Energy Environ. Sci., 2021,14:1286-1325. doi: 10.1039/D0EE04007J

    76. [76]

      Wang P C, Li F Z, Jiang K J, Zhang Y Y, Fan H C, Zhang Y, Miao Y, Huang J H, Gao C Y, Zhou X Q, Wang F Y, Yang L M, Zhan C L, Song Y L. Ion Exchange/Insertion Reactions for Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells[J]. Adv. Sci., 2020,71903047. doi: 10.1002/advs.201903047

    77. [77]

      Dang Y Y, Zhou Y A, Liu X L, Ju D X, Xia S Q, Xia H B, Tao X T. Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top - Seeded Solution Growth[J]. Angew. Chem. Int. Ed., 2016,55:3447-3450. doi: 10.1002/anie.201511792

    78. [78]

      Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R. Anharmonicity and Octahedral Tilting in Hybrid Vacancy -Ordered Double Perovskites[J]. Chem. Mater., 2017,30:472-483.

    79. [79]

      Stoumpos C C, Malliakas C, Kanatzidis M G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties[J]. Inorg. Chem., 2013,52:9019-9038. doi: 10.1021/ic401215x

    80. [80]

      Koh T M, Krishnamoorthy T, Yantara N, Shi C, Wei L L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N. Formamidinium Tin-Based Perovskite with Low Eg for Photovoltaic Applications[J]. J. Mater. Chem. A, 2015,3:14996-15000. doi: 10.1039/C5TA00190K

    81. [81]

      Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N. Organic Cation - Dependent Degradation Mechanism of Organotin Halide Perovskites[J]. Adv. Funct. Mater., 2016,26:3417-3423. doi: 10.1002/adfm.201505127

    82. [82]

      Wu T H, Liu X, Luo X H, Lin X S, Cui D Y, Wang Y B, Segawa H, Zhang Y Q, Han L Y. Lead - Free Tin Perovskite Solar Cells[J]. Joule, 2021,5:863-886. doi: 10.1016/j.joule.2021.03.001

    83. [83]

      MENG F N, LIU C Y, GAO L G, MA Y L. Strategies for Interfacial Modification in Perovskite Solar Cells[J]. Progress in Chemistry, 2020,32(6):817-835.  

    84. [84]

      Chung I, Lee B G, He J Q, Chang R, Kanatzidis M G. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency[J]. Nature, 2012,485:486-489. doi: 10.1038/nature11067

    85. [85]

      YANG Y, LUO Y, MA S P, ZHU C T, ZHU L, GUO X Y. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application[J]. Progress in Chemistry, 2021,33(5):779-801.  

    86. [86]

      Ban H X, Zhang T, Gong X, Sun Q, Zhang X L, Pootrakulchote N, Shen Y, Wang M K. Fully Inorganic CsSnI3 Mesoporous Perovskite Solar Cells with High Efficiency and Stability via Coadditive Engineering[J]. Solar RRL, 2021,52100069. doi: 10.1002/solr.202100069

    87. [87]

      Wu B, Zhou Y Y, Xing G H, Xu Q, Garces H F, Solanki A, Guh T W, Padture N P, Sum T Z. Long Minority - Carrier Diffusion Length and Low Surface - Recombination Velocity in Inorganic Lead - Free CsSnI3 Perovskite Crystal for Solar Cells[J]. Adv. Funct. Mater., 2017,271604818. doi: 10.1002/adfm.201604818

    88. [88]

      Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M. G. CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near - Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions[J]. J. Am. Chem. Soc., 2012,134:8579-8587. doi: 10.1021/ja301539s

    89. [89]

      Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N. Impact of Anionic Br- Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI3-xBrx) Solar Cells[J]. J. Phys. Chem. C, 2015,119:1763-1767. doi: 10.1021/jp5126624

    90. [90]

      Zhuo C, Wang J J, Ren Y, Yu C, Shum K. Schottky Solar Cells Based on CsSnI3 Thin-Films[J]. Appl. Phys. Lett., 2012,101093901. doi: 10.1063/1.4748888

    91. [91]

      Li B, Di H X, Chang B H, Yin R Y, Fu L, Zhang Y N, Yin L W. Efficient Passivation Strategy on Sn Related Defects for High Performance All - Inorganic CsSnI3 Perovskite Solar Cells[J]. Adv. Funct. Mater., 2021,312007447. doi: 10.1002/adfm.202007447

    92. [92]

      Ye T, Wang X Z, Wang K, Ma S Y, Yang D, Hou Y C, Yoon J, Wang K, Priya S. Localized Electron Density Engineering for Stabilized B-γ CsSnI3-Based Perovskite Solar Cells with Efficiencies[J]. ACS Energy Lett., 2021,6:1480-1489.

    93. [93]

      Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden - Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors[J]. Chem. Mater., 2016,28:2852-2867. doi: 10.1021/acs.chemmater.6b00847

    94. [94]

      Cao D H, Stoumpos C C, Yokoyama T, Logsdon J L, Song T B, Farha O K, Wasielewski M R, Hupp J T, Kanatzidis M G. Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 Perovskites[J]. ACS Energy Lett., 2017,2:982-990. doi: 10.1021/acsenergylett.7b00202

    95. [95]

      Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Qunitero B R R, Sutherlanf B, Mi Q X, Sargent E H, Ning Z J. Highly Oriented Low - Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance[J]. J. Am. Chem. Soc., 2017,139:6693-6699. doi: 10.1021/jacs.7b01815

    96. [96]

      Qiu J, Xia Y D, Zheng Y T, Hui W, Gu H, Yuan W B, Yu H, Chao L F, Niu T T, Yang Y G, Gao X Y, Chen Y H, Huang W. 2D Intermediate Suppression for Efficient Ruddlesden -Popper (RP) Phase Lead-Free Perovskite Solar Cells[J]. ACS Energy Lett., 2019,4:1513-1520. doi: 10.1021/acsenergylett.9b00954

    97. [97]

      Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Cruz S H T, Feng S L, Saliba M, Wang Z K, Abate A. Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-Free Perovskite Solar Cells[J]. ACS Energy Lett., 2020,5:1923-192. doi: 10.1021/acsenergylett.0c00782

    98. [98]

      Feng X, Zhang T Y, Ge L, Zhao Y X. Mixed Cation Hybrid Lead Halide Perovskites with Enhanced Performance and Stability[J]. J. Mater. Chem. A, 2017,5:11450-11461. doi: 10.1039/C7TA00042A

    99. [99]

      Liu X, Yang Z B, Chueh C C, Rajagopal A, Williams S T, Sun Y, Jen K Y. Improved Efficiency and Stability of Pb - Sn Binary Perovskite Solar Cells by Cs Substitution[J]. J. Mater. Chem. A, 2016,4:17939-17945. doi: 10.1039/C6TA07712A

    100. [100]

      Zhao Z, Gu F, Li Y, Sun W, Ye S, Rao H, Liu Z, Bian Z, Huang C. Mixed - Organic - Cation Tin Iodide for Lead - Free Perovskite Solar Cells with an Efficiency of 8.12%[J]. Adv. Sci., 2017,41700204. doi: 10.1002/advs.201700204

    101. [101]

      Liu X, Wang Y B, Wu T H, He X, Meng X Y, Barbaud J, Chen H, Segawa H, Yang X, Han L. Efficient and Stable Tin Perovskite Solar Cells Enabled by Amorphous - Polycrystalline Structure[J]. Nat. Commun., 2020,112678. doi: 10.1038/s41467-020-16561-6

    102. [102]

      Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G. Overcoming Short - Circuit in Lead - Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process[J]. J. Phys. Chem. Lett., 2016,7:776-782. doi: 10.1021/acs.jpclett.6b00118

    103. [103]

      Feng H, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chan R, Kanatzidis M G. Solvent - Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells[J]. J. Am. Chem. Soc., 2015,137:11445-11452. doi: 10.1021/jacs.5b06658

    104. [104]

      Xu W Z, Gao Y, Ming W J, He F, Li J Z, Zhu X H, Kang F Y, Li J Y, Wei G D. Suppressing Defects-Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering[J]. Adv. Mater., 2020,322003965. doi: 10.1002/adma.202003965

    105. [105]

      Yoo J J, Seo G, Chua M R, Park T G, Lu Y L, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovic V, Shin S S, Bawendi M G, Seo J. Efficient Perovskite Solar Cells via Improved Carrier Management[J]. Nature, 2021,590:587-593. doi: 10.1038/s41586-021-03285-w

    106. [106]

      Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Solvent Engineering for High - Performance Inorganic - Organic Hybrid Perovskite Solar Cells[J]. Nat. Mater., 2014,13:897-903. doi: 10.1038/nmat4014

    107. [107]

      Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells[J]. Angew. Chem. Int. Ed., 2014,53:9898-9903. doi: 10.1002/anie.201405334

    108. [108]

      Xu L G, Zhang C, Feng X Y, Lv W X, Huang Z Q, Lv W Z, Zheng C, Xing G C, Huang W, Chen R F. Vapor Incubation of FASnI3 Films for Efficient and Stable Lead-Free Inverted Perovskite Solar Cells[J]. J. Mater. Chem. A, 2021,9:16943-16951. doi: 10.1039/D1TA04722A

    109. [109]

      CHEN X Y, XIE J J, WANG W, YUAN H H, XU D, ZHANG T, HE Y L, SHEN H J. Research Progress of Compositional Controlling Strategy to Perovskite for High Performance Solar Cells[J]. Acta Chim. Sinica, 2019,77(1):9-23.  

    110. [110]

      Im J H, Jang I H, Pellet N, Gratzel M, Park N G. Growth of CH3NH3PbI3 Cuboids with Controlled Size for High - Efficiency Perovskite Solar Cells[J]. Nat. Nanotechnol., 2014,9:927-932. doi: 10.1038/nnano.2014.181

    111. [111]

      Chiang C H, Wu C G. Bulk Heterojunction Perovskite-PCBM Solar Cells with High Fill Factor[J]. Nat. Photonics, 2016,10:196-200. doi: 10.1038/nphoton.2016.3

    112. [112]

      Zhu Z L, Chueh C C, Li N, Mao C Y, Jen K Y. Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route[J]. Adv. Mater., 2018,301703800. doi: 10.1002/adma.201703800

    113. [113]

      Shahbazi S, Li M Y, Fathi A, Diau E W G. Realizing a Cosolvent System for Stable Tin - Based Perovskite Solar Cells Using a Two-Step Deposition Approach[J]. ACS Energy Lett., 2020,5:2508-2511. doi: 10.1021/acsenergylett.0c01190

    114. [114]

      Jokar E, Cheng P Y, Lin C Y, Narra S, Shahbazi S, Diau W G. Enhanced Performance and Stability of 3D-2D Tin Perovskite Solar Cells Fabricated with a Sequential Solution Deposition[J]. ACS Energy Lett., 2021,6:485-492. doi: 10.1021/acsenergylett.0c02305

    115. [115]

      Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G. Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead-Free Perovskite Solar Cells[J]. Adv. Mater., 2017,291606964. doi: 10.1002/adma.201606964

    116. [116]

      Xu L G, Liu H, Wei Q, Kai X, Liu X H, Jin W, Zhang H M, Huang W. High-Performance and Hysteresis-Free Planar Solar Cells with PC71BM and C60 Composed Structure Prepared Irrespective of Humidity[J]. ACS Sustaintial Chem. Eng., 2017,5:9718-9724. doi: 10.1021/acssuschemeng.7b01490

    117. [117]

      Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. Planar Heterojunction Perovskite Solar Cells via Vapor - Assisted Solution Process[J]. J. Am. Chem. Soc., 2014,136622625.

    118. [118]

      Ono L K, Leyden M R, Wang S H, Qi Y B. Organometal Halide Perovskite Thin Films and Solar Cells by Vapor Deposition[J]. J. Mater. Chem. A, 2016,4:6693-6713. doi: 10.1039/C5TA08963H

    119. [119]

      LIU X H. Preparation and Process Exploration of Tin - Based Perovskite Solar Cells. Nanjing: Nanjing University of Posts and Telecommunications, 2019: 1-61

    120. [120]

      Choi W G, Park C G, Kim Y, Moon T. Sn Perovskite Solar Cells via 2D-3D Bilayer Formation through a Sequential Vapor Process[J]. ACS Energy Lett., 2020,5:3461-3467. doi: 10.1021/acsenergylett.0c01887

    121. [121]

      Tai Q D, Guo X Y, Tang G Q, You P, Ng T W, Shen D, Cao J P, Liu C K, Wang N X, Zhu Y, Lee C S, Yan F. Antioxidant Grain Passivation for Air - Stable Tin - Based Perovskite Solar Cells[J]. Angew. Chem. Int. Ed., 2019,58:806-810. doi: 10.1002/anie.201811539

    122. [122]

      Marshall K P, Walker M, Walton R I, Hatton R A. Enhanced Stability and Efficiency in Hole-Transport-Layer-Free Cssni3 Perovskite Photovoltaics[J]. Nat. Energy, 2016,116178. doi: 10.1038/nenergy.2016.178

    123. [123]

      Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Lead - Free Halide Perovskite Solar Cells with High Photocurrents Realized through Vacancy Modulation[J]. Adv. Mater., 2014,26:7122-7127. doi: 10.1002/adma.201401991

    124. [124]

      Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, Seok S I. Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2 - Pyrazine Complex[J]. J. Am. Chem. Soc., 2016,138:3974-3977. doi: 10.1021/jacs.6b00142

    125. [125]

      Deng L L, Wang K, Yang H J, Yu H M, Hu B. Polymer Assist Crystallization and Passivation for Enhancements of Open-Circuit Voltage and Stability in Tin-Halide Perovskite Solar Cells[J]. J. Phys. D: Appl. Phys., 2018,51475102. doi: 10.1088/1361-6463/aae2ab

    126. [126]

      Meng X Y, Wang Y B, Lin J B, Liu X, He X, Barbaud J, Wu T H, Noda T, Yang X D, Han L Y. Surface-Controlled Oriented Growth of FASnI3 Crystals for Efficient Lead - Free Perovskite Solar Cells[J]. Joule, 2020,4:902-912. doi: 10.1016/j.joule.2020.03.007

    127. [127]

      Nakamura T, Yakumaru S, Truong M A, Kim K, Liu J W, Hu S, Otsuka K, Hashimoto R, Murdey R, Sasamori T, Kim H D, Ohkita H, Handa T, Kanemitsu Y, Wakamiya A. Sn(Ⅳ)-Free Tin Perovskite Films Realized by In Situ Sn(0) Nanoparticle Treatment of the Precursor Solution[J]. Nat. Commun., 2020,113008. doi: 10.1038/s41467-020-16726-3

    128. [128]

      Meng X, Li Y, Qu Y, Chen H, Jiang N, Li M, Xue D J, Hu J S, Huang H, Yang S. Crystallization Kinetics Modulation of FASnI3 Films with Pre-nucleation Clusters for Efficient Lead-Free Perovskite Solar Cells[J]. Angew. Chem. Int. Ed., 2021,60:3693-3698. doi: 10.1002/anie.202012280

    129. [129]

      Wang C B, Zhang Y T, Gu F D, Zhao Z R, Li H S, Jiang H, Bian Z Q, Liu Z W. Illumination Durability and High-Efficiency Sn-Based Perovskite Solar Cell under Coordinated Control of Phenylhydrazine and Halogen Ions[J]. Matter, 2021,4:709-721. doi: 10.1016/j.matt.2020.11.012

    130. [130]

      Ran C X, Gao W Y, Li J R, Xi J, Li L, Dai J F, Yang Y G, Gao X Y, Dong H, Jiao B, Spanopoulos I, Malliakas C D, Hou X, Kanatzidis M G, Wu Z X. Conjugated Organic Cations Enable Efficient Self-Healing FASnI3 Solar Cells[J]. Joule, 2019,3:3072-3087. doi: 10.1016/j.joule.2019.08.023

    131. [131]

      Khenkin M V, Katz E A, Abate A, Bardizza G, Berry J J, Brabec C, Brunetti F, Bulovic V, Burlingame Q, Carlo A D, Cheacharoen R, Cheng Y B, Colsmann A, Cros S, Domanski K, Dusza M, Fell C J, Forrest S R, Galagan Y, Di D G, Gratzel M, Hagfeldt A, von Hauff E, Hoppe H, Kettle J, Kobler H, Leite M S, Liu S, Loo Y L, Luther J M, Ma C Q, Madsen M, Manceau M, Matheron M, McGehee M, Meitzner R, Nazeeruddin M K, Nogueira A F, Odabaşı C, Osherov A, Park N G, Reese M O, Rossi F D, Saliba M, Schubert U S, Snaith H J, Stranks S D, Tress W, Troshin P A, Turkovic V, Veenstra S, Visoly-Fisher I, Walsh A, Watson T, Xie H, Yıldırım R, Zakeeruddin S M, Zhu K, Lira-Cantu M. Consensus Statement for Stability Assessment and Reporting for Perovskite Photovoltaics Based on ISOS Procedures[J]. Nat. Energy, 2020,5:35-49. doi: 10.1038/s41560-019-0529-5

    132. [132]

      Ke W, Stoumpos C C, Zhu M H, Mao L L, Spanopoulos I, Liu J, Kontsevol O Y, Chen M, Sarma D, Zhang Y B, Wasielewaki M R, Kanatzidis M G. Enhanced Photovoltaic Performance and Stability with a New Type of Hollow 3D Perovskite {en}FASnI3[J]. Sci. Adv., 2017,3e1701293. doi: 10.1126/sciadv.1701293

    133. [133]

      Kayesh M E, Chowdhury T H, Matsuishi K, Kaneko R, Kazaoui S, Lee J J, Noda T, Islam A. Enhanced Photovoltaic Performance of FASnI3 - Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive[J]. ACS Energy Lett., 2018,3:1584-1589. doi: 10.1021/acsenergylett.8b00645

    134. [134]

      Meng X, Lin J, Liu X, He X, Han L. Highly Stable and Efficient FASnI3 - Based Perovskite Solar Cells by Introducing Hydrogen Bonding[J]. Adv. Mater., 2019,311903721. doi: 10.1002/adma.201903721

    135. [135]

      Xu L G, Wu D, Lv W X, Xiang Y, Liu Y, Tao Y, Yin J, Qian M Y, Li P, Zhang L Q, Chen S F, Mohammed O F, Bakr O M, Duan Z, Chen R, Huang W. Resonance - Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells[J]. Adv. Mater., 2022,342107111. doi: 10.1002/adma.202107111

    136. [136]

      Jiang K, Wang J, Wu F, Xue Q F, Yao Q, Zhang J Q, Chen Y H, Zhang G Y, Zhu Z L, Yan H, Zhu L N, Yip S H L. Dopant - Free Organic Hole-Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells[J]. Adv. Mater., 2020,321908011. doi: 10.1002/adma.201908011

    137. [137]

      Wang Z, Zeng L X, Zhang C L, Lu Y L, Qiu S D, Wang C, Liu C, Pan L J, Wu S H, Hu J L, Liang G X, Fan P, Egelhaaf H J, Brabec C J, Luo F, Mai Y. Rational Interface Design and Morphology Control for Blade-Coating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81%[J]. Adv. Funct. Mater., 2020,302001240. doi: 10.1002/adfm.202001240

    138. [138]

      Hu L J, Li M, Yang K, Xiong Z, Yang B, Wang M, Tang X S, Zang Z G, Liu X X, Li B C, Xiao Z Y, Lu S R, Gong H, Ouyang J Y, Sun K. PEDOT - PSS Monolayers to Enhance the Hole Extraction and Stability of Perovskite Solar Cells[J]. J. Mater. Chem. A, 2018,6:16583-16589. doi: 10.1039/C8TA05234D

    139. [139]

      Wang F, Jiang X Y, Chen H, Shang Y Q, Liu H F, Wei J L, Zhou W J, He H L, Liu W M, Ning Z. 2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability[J]. Joule, 2018,2:2732-2743. doi: 10.1016/j.joule.2018.09.012

    140. [140]

      Xu L G, Feng X Y, Jia W B, Lv W B, Mei A Y, Zhou Y H, Zhang Q, Chen R F, Huang W. Recent Advances and Challenges of Inverted Lead-Free Tin-Based Perovskite Solar Cells[J]. Energy. Environ. Sci., 2021,14:4292-4317. doi: 10.1039/D1EE00890K

    141. [141]

      Ye T, Wang K, Hou Y C, Yang D, Smith N, Magill B, Yoon J, Mudiyanselage R R H H, Khodaparast G A, Wang K, Priya S. Ambient-Air-Stable Lead-Free CsSnI3 Solar Cells with Greater than 7.5% Efficiency[J]. J. Am. Chem. Soc., 2021,143:4319-4328. doi: 10.1021/jacs.0c13069

    142. [142]

      Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability[J]. J. Am. Chem. Soc., 2017,139:14009-14012. doi: 10.1021/jacs.7b07949

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(44)
  • Abstract views(1525)
  • HTML views(471)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return