Controllable Preparation of Strontium Carbonate Microspheres by Fast Precipitation Reaction in a Miniature Y-Jet Mixer
- Corresponding author: Pei-Cheng LUO, luopeicheng@seu.edu.cn
Citation: Han-Zhi YAO, Pan YOU, Jun-Jie ZHANG, Pei-Cheng LUO. Controllable Preparation of Strontium Carbonate Microspheres by Fast Precipitation Reaction in a Miniature Y-Jet Mixer[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2103-2110. doi: 10.11862/CJIC.2022.206
Homeijer S J, Barrett R A, Gower L B. Polymer - Induced Liquid - Precursor (PILP) Process in the Non-calcium Based Systems of Barium and Strontium Carbonate[J]. Cryst. Growth Des., 2010,10(3):1040-1052. doi: 10.1021/cg800918g
Yu J G, Guo H, Cheng B. Shape Evolution of SrCO3 Particles in the Presence of Poly-(styrene-alt-maleic acid)[J]. J. Solid State Chem., 2006,179(3):800-803. doi: 10.1016/j.jssc.2005.12.001
Zou X W, Wang Y N, Liang S D, Duan D P. Facile Synthesis of Ultrafine and High Purity Spherical Strontium Carbonate via Gas - liquid Reaction[J]. Mater. Res. Express, 2020,7(2):268-276.
Liu Y X, Jing X H, Hu X H, Wu G. Morphology of Strontium Carbonate Particle Adjusted by Phthalic Acid and Isophthalic Acid[J]. IOP Conf., 2018,389012020.
Du J M, Liu Z M, Li Z H, Han B X, Huang Y, Zhang J L. Synthesis of Mesoporous SrCO3 Spheres and Hollow CaCO3 Spheres in Room temperature Ionic Liquid[J]. Microporous Mesoporous Mater., 2005,83(1/2/3):145-149.
Cao M H, Wu X L, He X Y, Hu C W. Microemulsion-Mediated Solvothermal Synthesis of SrCO3 Nanostructures[J]. Langmuir, 2005,21(13):6093-6096. doi: 10.1021/la050736f
Gradl J, Schwarzer H C, Schwertfirm F, Manhart M, Peukert W. Precipitation of Nanoparticles in a T-Mixer: Coupling the Particle Population Dynamics with Hydrodynamics through Direct Numerical Simulation[J]. Chem. Eng. Process., 2006,45(10):908-916. doi: 10.1016/j.cep.2005.11.012
Kugler R T, Kind M. Experimental Study about Plugging in Confined Impinging Jet Mixers during the Precipitation of Strontium Sulfate[J]. Chem. Eng. Process., 2016,101:25-32. doi: 10.1016/j.cep.2015.12.007
Li W F, Wei Y, Tu G Y, Shi Z H, Liu H F, Wang F C. Experimental Study about Mixing Characteristic and Enhancement of T-Jet Reactor[J]. Chem. Eng. Sci., 2016,144:116-125. doi: 10.1016/j.ces.2016.01.024
Choi Y J, Chung S T, Oh M, Kim H S. Investigation of Crystallization in a Jet Y - Mixer by a Hybrid Computational Fluid Dynamics and Process Simulation Approach[J]. Cryst. Growth Des., 2005,5(3):959-968. doi: 10.1021/cg049670x
Susanti , Winkelman J G M, Schuur B, Heeres H J, Yue J. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors[J]. Ind. Eng. Chem. Res., 2016,55(16):4691-4702. doi: 10.1021/acs.iecr.5b04917
Szilagyi B, Muntean N, Barabas R, Ponta O, Lakatos B G. Reaction Precipitation of Amorphous Calcium Phosphate: Population Balance Modelling and Kinetics[J]. Chem. Eng. Res. Des., 2015,93:278-286. doi: 10.1016/j.cherd.2014.04.003
DiPasquale N, Marchisio D L, Barresi A A. Model Validation for Precipitation in Solvent-Displacement Processes[J]. Chem. Eng. Sci., 2012,84:671-683. doi: 10.1016/j.ces.2012.08.043
Fonte C P, Sultan M A, Santos R J, Dias M M, Lopes J C B. Flow Imbalance and Reynolds Number Impact on Mixing in Confined Impinging Jets[J]. Chem. Eng. J., 2015,260:316-330. doi: 10.1016/j.cej.2014.08.090
Marchisio D L, Omegna F, Barresi A A. Production of TiO2 Nanoparticles with Controlled Characteristics by Means of a Vortex Reactor[J]. Chem. Eng. J., 2009,146(3):456-465. doi: 10.1016/j.cej.2008.10.031
Marchisio D L, Omegna F, Barresi A A, Bowen P. Effect of Mixing and Other Operating Parameters in Sol - gel Processes[J]. Ind. Eng. Chem. Res., 2008,47(19):7202-7210. doi: 10.1021/ie800217b
Liu Y, Cheng C Y, Liu Y, Prud'homme R K, Fox R O. Mixing in a Multi-inlet Vortex Mixer (MIVM) for Flash Nano-precipitation[J]. Chem. Eng. Sci., 2008,63(11):2829-2842. doi: 10.1016/j.ces.2007.10.020
Liu Z P, Passalacqua A, Olsen M G, Fox R O, Hill J C. Dynamic Delayed Detached Eddy Simulation of a Multi-inlet Vortex Reactor[J]. AIChE J., 2016,62(7):2570-2578. doi: 10.1002/aic.15230
Cafiero L M, Baffi G, Chianese A, Jachuck R J J. Process Intensification: Precipitation of Barium Sulfate Using a Spinning Disk Reactor[J]. Ind. Eng. Chem. Res., 2002,41(21):5240-5246. doi: 10.1021/ie010654w
Peng H, Wang N, Wang D X, Ling X. Experimental Study on the Critical Characteristics of Liquid Atomization by a Spinning Disk[J]. Ind. Eng. Chem. Res., 2016,55(21):6175-6185. doi: 10.1021/acs.iecr.6b00401
Guo S C, Evans D G, Li D Q, Duan X. Experimental and Numerical Investigation of the Precipitation of Barium Sulfate in a Rotating Liquid Film Reactor[J]. AIChE J., 2009,55(8):2024-2034. doi: 10.1002/aic.11818
Wu B, Fang Y, Zhao C C, Wang Y H, Luo P C. Experimental Study and Numerical Simulation of Barium Sulfate Precipitation Process in a Continuous Multi - orifice - Impinging Transverse Jet Reactor[J]. Powder Technol., 2017,321:180-189. doi: 10.1016/j.powtec.2017.08.042
Qi M X, Li J S, Wang S X, Yang Z S, Wang S Y, Zou X W. Synthesis of Spherical SrCO3 Powders by Ultrasonic Waves//Cui C X, Li Y, Yuan Z H. Advanced Materials Research: Vol. 535-537. [S. l. ]: Trans Tech Publications, Ltd., 2012: 301-304
Yang L F, Chu D Q, Wang L M, Ge G, Sun H L. Facile Synthesis of Porous Flower-like SrCO3 Nanostructures by Integrating Bottom-Up and Top-Down Routes[J]. Mater. Lett., 2016,167:4-8. doi: 10.1016/j.matlet.2015.12.131
Zhao Y H, Liu J R. Effect of EDTA and Phosphate on Particle Size during Precipitation of Nanosized BaSO4 Particles[J]. Chem. Lett., 2006,35(9):1040-1041. doi: 10.1246/cl.2006.1040
Zhao Y H, Jia Q Y, Gao Y, Wang X J. Effect of EDTA on the Morphology and Size of SrCO3 Particles during Crystallization//Liu X H, Jiang Z Y, Han J T. Advanced Materials Research: Vol. 148-149. [S. l. ]: Trans Tech Publications, Ltd., 2010: 1551-1555
Silver J, Martinez- Rubio M I, Ireland T G, Fern G R, Withnall R. The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium Co-doped Yttrium Oxide Phosphors[J]. J. Phys. Chem. B, 2001,105(5):948-953. doi: 10.1021/jp002778c
Zhang M X, Huo J C, Yu Y S, Cui C P, Lei Y L. Morphology Control of SrCO3 Crystals using Complexons as Modifiers in the Ethanol - Water Mixtures[J]. Chin. J. Struct. Chem., 2008,27(10):1223-1229.
Schwarzer H C, Peukert W. Experimental Investigation into the Influence of Mixing on Nanoparticle Precipitation[J]. Chem. Eng. Technol., 2002,25(6):657-661. doi: 10.1002/1521-4125(200206)25:6<657::AID-CEAT657>3.0.CO;2-5
Zhongjie Li , Xiangyue Kong , Yuhao Liu , Huayu Qiu , Lingling Zhan , Shouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Xin Lu , Haoran Sun , Xiaomeng Li , Chunrui Li , Jinfeng Wang , Dandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
1: Feed tank for Solution A; 2: Feed tank for Solution B; 3: Gear pumps; 4: Valves; 5: Flowmeters; 6: Y-jet mixer; 7: Product collection tank
(a-e) cs=0.1 mol·L-1; (a) RE=0; (b) RE=0.1; (c) RE=0.2; (d) RE=0.3; (e) RE=0.4; (f) cs=0.2 mol·L-1, RE=0.1; (g) cs=0.15 mol·L-1, RE=0.2; (h) cs=0.2 mol·L-1, RE=0.2; (i) cs=0.25 mol·L-1, RE=0.2
Conditions: cs=0.1 mol·L-1; (a) RE=0; (b) RE=0.1; (c) RE=0.2; (d) RE=0.3; (e) RE=0.4
(a) cs=0.1 mol·L-1; (b) RE=0.2