Citation: You-Zhu YU, Yan-Ru ZHANG, Yu-Hua GUO, Zhong-Yuan ZHOU, Li-Guo YANG, Jia-Lin LI, Li-Yue FANG, Kuan-Kuan QIAO. Syntheses, Structure-Regulation, and Photoelectric Properties of 2-Pyridinecarbaldehyde Oxime Assembled Titanium Oxo Clusters[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2299-2307. doi: 10.11862/CJIC.2022.205 shu

Syntheses, Structure-Regulation, and Photoelectric Properties of 2-Pyridinecarbaldehyde Oxime Assembled Titanium Oxo Clusters

  • Corresponding author: You-Zhu YU, 119yyz@163.com
  • Received Date: 1 May 2022
    Revised Date: 1 August 2022

Figures(7)

  • [Ti2(μ2-O)(Pycox)2(OiPr)4] (1) was solvothermally synthesized by the reaction of 2-pyridinecarbaldehyde oxime (Hpycox) and Ti(OiPr)4 in a simple and general approach. Interestingly, by analyzing the structure of 1, diphenylphosphinic acid and phenylphosphonic acid were selected respectively to regulate the structure of 1, and [Ti3(μ2-O)2(Pycox)2(Ph2PO2)2(OiPr)4] (2) and [Ti6(μ2-O)2(μ3-O)2(Pycox) 2 (PhPO3)4(OiPr) 6]·2CH3CN (3) were successfully obtained. Moreover, their light absorption behaviors, band gaps, and photocurrent responses were also investigated. The band gaps of complexes 1-3 were 2.89, 3.00, and 2.87 eV, respectively. Among the three complexes, complex 2 exhibited the largest photocurrent density with the value of 0.10 μA·cm-2.
  • 加载中
    1. [1]

      Chen X, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev., 2007,107(7):2891-2959. doi: 10.1021/cr0500535

    2. [2]

      Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture[J]. J. Am. Chem. Soc., 2008,130(12):4007-4015.

    3. [3]

      Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 Photocatalysis: Mechanisms and Materials[J]. Chem. Rev., 2014,114(19):9919-9986.

    4. [4]

      Chen X, Liu L, Peter Y Y, Mao S S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals[J]. Science, 2011,331(6018):746-750. doi: 10.1126/science.1200448

    5. [5]

      Sun S C, Gao P, Yang Y R, Yang P P, Chen Y J, Wang Y B. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production[J]. ACS Appl. Mater. Interfaces, 2016,8(28):18126-18131. doi: 10.1021/acsami.6b05244

    6. [6]

      Wu M C, Hiltunen J, Sápi A S, Avila A, Larsson W, Liao H C, Huuhtanen M, Tóth G Z, Shchukarev A, Laufe N M. Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen[J]. ACS Nano, 2011,5(6):5025-5030. doi: 10.1021/nn201111j

    7. [7]

      Park J H, Kim S, Bard A J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Lett., 2006,6(1):24-28. doi: 10.1021/nl051807y

    8. [8]

      Yang C Y, Wang Z, Lin T Q, Yin H, Lü X J, Wan D Y, Xu T, Zheng C, Lin J H, Huang F Q, Xie X M, Jiang M H. Core-Shell Nanostructured "Black" Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping[J]. J. Am. Chem. Soc., 2013,135(47):17831-17838. doi: 10.1021/ja4076748

    9. [9]

      Narayanam N, Chintakrinda K, Fang W H, Kang Y, Zhang L, Zhang J. Azole Functionalized Polyoxo-Titanium Clusters With Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies[J]. Inorg. Chem., 2016,55(20):10294-10301. doi: 10.1021/acs.inorgchem.6b01551

    10. [10]

      Fan X, Fu H, Zhang L, Zhang J. Pyrazole-thermal Synthesis: New Approach towards N-Rich Titanium-Oxo Clusters with Photochromic Behaviors[J]. Dalton Trans., 2019,48(23):8049-8052. doi: 10.1039/C9DT01628G

    11. [11]

      Fan X, Wang J H, Wu K F, Zhang L, Zhang J. Isomerism in Titanium-Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity[J]. Angew. Chem. Int. Ed., 2019,131(5):1334-1337. doi: 10.1002/ange.201809961

    12. [12]

      Narayanam N, Fang W H, Chintakrinda K, Zhang L, Zhang J. Deep Eutectic-Solvothermal Synthesis of Titanium-Oxo Clusters Protected by π-Conjugated Chromophores[J]. Chem. Commun., 2017,53(57):8078-8080. doi: 10.1039/C7CC04388K

    13. [13]

      Gao M Y, Fang W H, Wen T, Zhang L, Zhang J. Connecting Titanium-Oxo Clusters by Nitrogen Heterocyclic Ligands to Produce Multiple Cluster Series with Photocatalytic H2 Evolution Activities[J]. Cryst. Growth Des., 2017,17(7):3592-3595. doi: 10.1021/acs.cgd.7b00413

    14. [14]

      Cui X, Zhang F Q, Li X, Hou J J, Li H, Zhang X M. Polyoxotitanate Molecular Cage Featuring Four Types of Ethylenediamines: Formation Mechanism Insight from Host-Guest Interaction and Crystallo-graphic Study[J]. Inorg. Chem., 2021,60(12):9174-9180. doi: 10.1021/acs.inorgchem.1c01189

    15. [15]

      Yu Y Z, Zhang Y R, Geng C H, Sun L, Guo Y, Feng Y R, Wang Y X, Zhang X M. Precise and Wide-Ranged Band-Gap Tuning of Ti6-Core-Based Titanium Oxo Clusters by the Type and Number of Chromophore Ligands[J]. Inorg. Chem., 2019,58(24):16785-16791. doi: 10.1021/acs.inorgchem.9b02951

    16. [16]

      Cui L N, Liu P Y, Yang L, Su X P, Zhu Q Y, Dai J. A Series of Ti6-Oxo-Clusters Anchored with Arylamine Dyes, Effect of Dye Structures on Photocurrent Responses[J]. Chem. Asian J., 2019,14(18):3098-3204.

    17. [17]

      Zhu Q Y, Dai J. Titanium Oxo/Alkoxyl Clusters Anchored with Photoactive Ligands[J]. Coord. Chem. Rev., 2020213664.

    18. [18]

      Benedict J B, Coppens P. The Crystalline Nanocluster Phase as a Medium for Structural and Spectroscopic Studies of Light Absorption Of Photosensitizer Dyes On Semiconductor Surfaces[J]. J. Am. Chem. Soc., 2010,132(9):2938-2944. doi: 10.1021/ja909600w

    19. [19]

      Guo Y H, Yu Y Z, Niu Y S, Wang Z, Shi W Y, Wu X L. Solvothermal Synthesis, Crystal Structure and Photocurrent Property of a Ti6-Core-Based Titanium Oxo Cluster[J]. Chin. J. Struct. Chem., 2021,40(3):357-362.

    20. [20]

      Yu Y Z, Guo Y, Zhang Y R, Liu M M, Feng Y R, Geng C H, Zhang X M. A Series of Silver Doped Butterfly-like Ti8Ag2 Clusters with Two Ag Ions Panelled on a Ti8 Surface[J]. Dalton Trans., 2019,48(35):13423-13423. doi: 10.1039/C9DT02508A

    21. [21]

      Mirzaee M, Norouzi M, Faghani M, Amini M M, Khavasi H R. Synthesis, Characterization and Molecular Structure of Titanium Alkoxide Complexes with Aromatic Oxime Ligands[J]. Transit. Met. Chem., 2014,39(1):55-62. doi: 10.1007/s11243-013-9773-x

    22. [22]

      Liu X X, Chen G H, Tao J, Zhang J, Zhang L. Synthesis, Structure, and Light Absorption Behaviors of Prismatic Titanium-Oxo Clusters Containing Lacunary Lindqvist-like Species[J]. Inorg. Chem., 2022,61(3):1385-1390. doi: 10.1021/acs.inorgchem.1c02891

    23. [23]

      Said A, Gao C, Liu C, Niu H, Wang D, Liu Y, Du L, Tung C H, Wang Y. A Mesoporous Lead-Doped Titanium Oxide Complex with High Performance and Recyclability in I2 Uptake and Photocatalysis[J]. Inorg. Chem., 2022,61(1):586-596. doi: 10.1021/acs.inorgchem.1c03263

    24. [24]

      Han E M, Yu W D, Yan J, Yi X Y, Liu C. Metal-Directed Self-Assembly of {Ti8L2} Cluster-Based Coordination Polymers with Enhanced Photocatalytic Alcohol Oxidation Activity[J]. Inorg. Chem., 2022,61(2):923-930. doi: 10.1021/acs.inorgchem.1c02842

    25. [25]

      Chen R, Hong Z F, Zhao Y R, Zheng H, Li G J, Zhang Q C, Kong X J, Long L S, Zheng L S. Ligand-Dependent Luminescence Properties of Lanthanide-Titanium Oxo Clusters[J]. Inorg. Chem., 2019,58(22):15008-15012. doi: 10.1021/acs.inorgchem.9b02112

    26. [26]

      Li N, Zhao S Q, Ding X R, Hu X Y, Zhang Q K, Zou G D, Fan Y. 8-Hydroxyquinoline Functionalized Titanium-Oxo Clusters for Visible-Light-Driven Photocatalytic Oxidative Desulfurization[J]. Inorg. Chem. Commun., 2021,130108681. doi: 10.1016/j.inoche.2021.108681

    27. [27]

      Zhu B C, Zhang L, Zhang J. p-Arsanilic Acid Stabilizing Titanium-Oxo Clusters with Various Core Structures and Light Absorption Behaviours[J]. Inorg. Chem. Commun., 2017,86:14-17. doi: 10.1016/j.inoche.2017.09.015

    28. [28]

      WU N N, ZHAO M M, LIU S J, LIU B. Preparation, Crystal Structure and Characterization of One-Dimensional Europium-Doped Titanium-Oxo Cluster of Ti4Eu2O4(OOCC6H5)14[J]. Chinese J. Inorg. Chem., 2020,36(11):2080-2086. doi: 10.11862/CJIC.2020.231

    29. [29]

      Zhang N, Guo Y H, Yu Y Z, Wang Z, Niu Y S, Wu X L. Solvothermal Synthesis, Crystal Structure and Luminescence Property of a 1D Silver Coordination Polymer[J]. Chin. J. Struct. Chem., 2020,39(11):2009-2015.

    30. [30]

      Wendlandt W W, Hecht H G. Reflectance Spectroscopy: Vol. 21. John Wiley & Sons, 1966.

    31. [31]

      Liu J J, Li N, Sun J W, Liu J, Dong L Z, Yao S J, Zhang L, Xin Z F, Shi J W, Wang J X, Li S L, Lan Y Q. Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO2 Photoreduction[J]. ACS Catal., 2021:4510-4519.

    32. [32]

      Li N, Liu J J, Sun J W, Dong B X, Dong L Z, Yao S J, Xin Z, Li S L, Lan Y Q. Calix[8]arene-Constructed Stable Polyoxo-Titanium Clusters for Efficient CO2 Photoreduction[J]. Green Chem., 2020,22(16):5325-5332. doi: 10.1039/D0GC01497D

    33. [33]

      Wang C, Liu C, Li L J, Sun Z M. Synthesis, Crystal Structures, and Photochemical Properties of a Family of Heterometallic Titanium Oxo Clusters[J]. Inorg. Chem., 2019,58(9):6312-6319. doi: 10.1021/acs.inorgchem.9b00508

  • 加载中
    1. [1]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    2. [2]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    5. [5]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    6. [6]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    7. [7]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    11. [11]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    13. [13]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    16. [16]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    17. [17]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    18. [18]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    19. [19]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(5)
  • Abstract views(690)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return