Citation: Dong-Bin CHEN, Jing-Ya DING, Guo-Lin ZHANG, Lan FAN, Lin SUN, Feng CHENG, Yong-Long LIU, Yi-Ke CHEN, Qi XU. Manganese Supported Nitrogen-Doped Graphene and Performance of Catalytic Decomposition High-Humidity Ozone[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2072-2082. doi: 10.11862/CJIC.2022.203 shu

Manganese Supported Nitrogen-Doped Graphene and Performance of Catalytic Decomposition High-Humidity Ozone

Figures(12)

  • Nitrogen - doped graphene (NG) was synthesized by thermal annealing of graphene oxide (GO) using melamine as the nitrogen source, and NG-loaded manganese (Mn/NG) was prepared using the immersion precipitation method. At 80% relative humidity (RH) and an initial ozone concentration of 85.7 mg·m-3, the decomposition rate of ozone remained above 80% after 24 h of reaction. Under the low RH environment, the catalytic activity can be restored to the initial state again. The nitrogen doping not only created structural defects for the catalyst, but also the lone pair electrons of nitrogen atoms increased the electron density of oxygen vacancies, reduced the adsorption energy of water molecules, and improved the moisture resistance of the catalyst.
  • 加载中
    1. [1]

      Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov G E. Ozone Decomposition[J]. Interdiscip Toxicol., 2014,7(2):47-59. doi: 10.2478/intox-2014-0008

    2. [2]

      Namdari M, Lee C S, Haghighat F. Active Ozone Removal Technologies for a Safe Indoor Environment: A Comprehensive Review[J]. Build. Sci., 2021,187107370.

    3. [3]

      ZHANG L H, GAO W W, CHEN Z C, ZHOU J, WANG X M, ZHANG H F. CoAl2O4/Ceramic Honeycomb Catalyst: Preparation and Performance on Catalytic Ozonation in Wastewater Treatment[J]. Chinese J. Inorg. Chem., 2017,33(6):985-992.  

    4. [4]

      Shao M, Zhang Y H, Zeng L M, Tang X Y, Zhang J, Zhong L J, Wang B G. Ground-Level Ozone in the Pearl River Delta and the Roles of VOC and NO x in Its Production[J]. J. Environ. Manage., 2009,90(1):512-518. doi: 10.1016/j.jenvman.2007.12.008

    5. [5]

      Wolkoff P. Indoor Air Pollutants in Office Environments: Assessment of Comfort, Health, and Performance[J]. Int. J. Hyg. Environ. Health, 2013,216(4):371-394. doi: 10.1016/j.ijheh.2012.08.001

    6. [6]

      Tao Y B, Huang W, Huang X L, Zhong L J, Lu S E, Li Y, Dai L Z, Zhang Y H, Zhu T. Estimated Acute Effects of Ambient Ozone and Nitrogen Dioxide on Mortality in the Pearl River Delta of Southern China[J]. Environ. Health Perspect., 2012,120(3):393-398. doi: 10.1289/ehp.1103715

    7. [7]

      Gao W, Tie X X, Xu J M, Huang R J, Mao X Q, Zhou G Q, Chang L Y. Long-Term Trend of O3 in a Mega City (Shanghai), China: Characteristics, Causes, and Interactions with Precursors[J]. Sci. Total Environ., 2017,603:425-433.

    8. [8]

      ZHOU L N, CHEN Y Q, REN C J, GONG M C. Pd/MnOx+Pd/γ-Al2O3 Monolith Catalysts for Ground-Level Ozone Decomposition[J]. Chinese J. Inorg. Chem., 2013,29(11):2363-2369.  

    9. [9]

      Kotelnikov S N, Stepanov E V. Role of Aqueous Aerosols in Ozone Decomposition in the Near-Surface Atmosphere[J]. Bull. Lebedev Phys. Inst., 2019,46(9):284-288. doi: 10.3103/S1068335619090045

    10. [10]

      Hellen H, Kuronen P, Hakola H. Heated Stainless Steel Tube for Ozone Removal in the Ambient Air Measurements of Mono - and Sesquiterpenes[J]. Atmos. Environ., 2012,57:35-40. doi: 10.1016/j.atmosenv.2012.04.019

    11. [11]

      Schumacher , Joachim H. The Mechanism of the Photochemical Decomposition of Ozone[J]. J. Am. Chem. Soc., 1930,52(6):2377-2391. doi: 10.1021/ja01369a026

    12. [12]

      SUN Y H, ZHANG M, YANG J J. Preparationand Characterization of Bimetal Core - Shell Structure Supported Au@Ag/TiO2 Catalyst[J]. Chinese J.Inorg. Chem., 2009,25(11):1965-1970. doi: 10.3321/j.issn:1001-4861.2009.11.014

    13. [13]

      Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdes H. Role of Lewis Acid Sites of ZSM-5 Zeolite on Gaseous Ozone Abatement[J]. Chem. Eng. J., 2013,231:281-286. doi: 10.1016/j.cej.2013.07.002

    14. [14]

      Wang H, Rassu P, Wang X, Li H W, Wang X R, Wang X Q, Feng X, Yin A X, Li P F, Jin X, Chen S L, Ma X J, Wang B. An Iron-Containing Metal-Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition[J]. Angew. Chem. Int. Ed., 2018,57(50):16416-16420. doi: 10.1002/anie.201810268

    15. [15]

      Jia J B, Zhang P Y, Chen L. The Effect of Morphology of α-Mno2 on Catalytic Decomposition of Gaseous Ozone[J]. Catal. Sci. Technol., 2016,6(15):5841-5847. doi: 10.1039/C6CY00301J

    16. [16]

      Xu Z H, Yang W H, Si W Z, Chen J J, Peng Y, Li J H. A Novel γlike MnO2 Catalyst for Ozone Decomposition in High Humidity Conditions[J]. J. Hazard. Mater., 2021,420126641. doi: 10.1016/j.jhazmat.2021.126641

    17. [17]

      Liu Y, Yang W J, Zhang P Y, Zhang J Y. Nitric Acid-Treated Birnessite- Type MnO2: An Efficient and Hydrophobic Material for Humid Ozone Decomposition[J]. Appl. Surf. Sci., 2018,422:640-649.

    18. [18]

      Zhu G X, Zhu W, Lou Y, Ma J, Yao W Q, Zong R L, Zhu Y F. Encapsulate α-MnO2 Nanofiber within Graphene Layer to Tune Surface Electronic Structure for Efficient Ozone Decomposition[J]. Nat. Commun., 2021,12(1)4152. doi: 10.1038/s41467-021-24424-x

    19. [19]

      Zhang L, Yang J W, Wang A Q, Chai S H, Guan J, Nie L F, Fan G J, Han N, Chen Y F. High Performance Ozone Decomposition Spinel (Mn, Co)3O4 Catalyst Accelerating the Rate-Determining Step[J]. Appl. Catal. B-Environ., 2022,30120957.

    20. [20]

      Yu Y, Ji J, Li K, Huang H B, Shrestha R P, Oanh N T K, Winijkul E, Deng J G. Activated Carbon Supported MnO Nanoparticles for Efficient Ozone Decomposition at Room Temperature[J]. Catal. Today, 2020,355:573-579. doi: 10.1016/j.cattod.2019.05.063

    21. [21]

      Ma J Z, Wang C X, He H. Transition Metal Doped Cryptomelane- Type Manganese Oxide Catalysts for Ozone Decomposition[J]. Appl. Catal. B-Environ., 2017,201:503-510. doi: 10.1016/j.apcatb.2016.08.050

    22. [22]

      Dato A, Lee Z, Jeon K J, Erni R, Radmilovic V, Richardson T J, Frenklach M. Clean and Highly Ordered Graphene Synthesized in the Gas Phase[J]. Chem. Commun., 2009,40:6095-6097.

    23. [23]

      Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst- Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis[J]. ACS Nano, 2011,5(6):4350-4358. doi: 10.1021/nn103584t

    24. [24]

      Pieta I S, Rathi A, Pieta P, Nowakowski R, Holdynski M, Pisarek M, Kaminska A, Gawande M B, Zboril R. Electrocatalytic Methanol Oxidation over Cu, Ni and Bimetallic Cu-Ni nanoparticles Supported on Graphitic Carbon Nitride[J]. Appl. Catal. B -Environ., 2019,244:272-283. doi: 10.1016/j.apcatb.2018.10.072

    25. [25]

      Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G, Dai H J. Simultaneous Nitrogen Doping and Reduction of Graphene Oxide[J]. J. Am. Chem. Soc., 2009,131(43):15939-15944. doi: 10.1021/ja907098f

    26. [26]

      Sun Q L, Tang M, Hendriksen P V, Chen B. Biotemplated Fabrication of a 3D Hierarchical Structure of Magnetic ZnFe2O4/MgAl-LDH for Efficient Elimination of Dye from Water[J]. J. Alloy. Compd., 2020,829154552. doi: 10.1016/j.jallcom.2020.154552

    27. [27]

      Liu Z, Guo R T, Meng J S, Liu X, Wang X P, Li Q, Mai L Q. Facile Electrospinning Formation of Carbon-Confined Metal Oxide Cubein-Tube Nanostructures for Stable Lithium Storage[J]. Chem. Commun., 2017,53(59):8284-8287. doi: 10.1039/C7CC03727A

    28. [28]

      Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing[J]. ACS Nano, 2010,4(4):1790-1798. doi: 10.1021/nn100315s

    29. [29]

      Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049

    30. [30]

      Yang H, Gong L Q, Wang H M, Dong C L, Wa ng, J L, Qi K, Liu H F, Guo X P, Xia B Y. Preparation of Nickel-Iron Hydroxides by Microorganism Corrosion for Efficient Oxygen Evolution[J]. Nat. Commun., 2020,115075. doi: 10.1038/s41467-020-18891-x

    31. [31]

      Wang H, Peng B, Zhang R D, Chen H X, Wei Y. Synergies of Mn Oxidative Ability and ZSM-5 Acidity for 1, 2-Dichloroethane Catalytic Elimination[J]. Appl. Catal. B-Environ., 2020,276118922. doi: 10.1016/j.apcatb.2020.118922

    32. [32]

      Liu S L, Ji J, Yu Y, Huang H B. Facile Synthesis of Amorphous Mesoporous Manganese Oxides for Efficient Catalytic Decomposition of Ozone[J]. Catal. Sci. Technol., 2018,8:4264-4273. doi: 10.1039/C8CY01111G

    33. [33]

      Liu J, Ke J, Li D G, Sun H Q, Liang P, Duan X G, Tian W J, Tade M O, Liu S M, Wang S B. Oxygen Vacancies in Shape Controlled Cu2O/ Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants[J]. ACS Appl. Mater. Interfaces, 2017,9(13):11678-11688. doi: 10.1021/acsami.7b01605

    34. [34]

      Yang W J, Ren J N, Li J J, Zhang H W, Ma K, Wang Q W, Gao Z Y, Wu C C, Gates I D. A Novel Fe-Co Double-Atom Catalyst with High Low-Temperature Activity and Strong Water-Resistant for O3 Decomposition: A Theoretical Exploration[J]. J. Hazard. Mater., 2022,421126639. doi: 10.1016/j.jhazmat.2021.126639

    35. [35]

      Yang W J, Gao Z Y, Liu X S, Li X, Ding X L, Yan W P. Single-Atom Iron Catalyst with Single- Vacancy Graphene-Based Substrate as a Novel Catalyst for NO oxidation: A Theoretical Study[J]. Catal. Sci. Technol., 2018,8(16):4159-4168. doi: 10.1039/C8CY01225C

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    3. [3]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    4. [4]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    5. [5]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    8. [8]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    9. [9]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    10. [10]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    11. [11]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    12. [12]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    13. [13]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    14. [14]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    15. [15]

      Sushu Zhang Yang Yang Jingyu Wang . Pyridinic nitrogen-substituted graphene membranes for exceptional CO2 capture. Chinese Journal of Structural Chemistry, 2025, 44(2): 100440-100440. doi: 10.1016/j.cjsc.2024.100440

    16. [16]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    17. [17]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    18. [18]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    19. [19]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    20. [20]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

Metrics
  • PDF Downloads(7)
  • Abstract views(624)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return