Manganese Supported Nitrogen-Doped Graphene and Performance of Catalytic Decomposition High-Humidity Ozone
- Corresponding author: Feng CHENG, chf@nju.edu.cn Qi XU, ycxqsteve@163.com
Citation: Dong-Bin CHEN, Jing-Ya DING, Guo-Lin ZHANG, Lan FAN, Lin SUN, Feng CHENG, Yong-Long LIU, Yi-Ke CHEN, Qi XU. Manganese Supported Nitrogen-Doped Graphene and Performance of Catalytic Decomposition High-Humidity Ozone[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2072-2082. doi: 10.11862/CJIC.2022.203
Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov G E. Ozone Decomposition[J]. Interdiscip Toxicol., 2014,7(2):47-59. doi: 10.2478/intox-2014-0008
Namdari M, Lee C S, Haghighat F. Active Ozone Removal Technologies for a Safe Indoor Environment: A Comprehensive Review[J]. Build. Sci., 2021,187107370.
ZHANG L H, GAO W W, CHEN Z C, ZHOU J, WANG X M, ZHANG H F. CoAl2O4/Ceramic Honeycomb Catalyst: Preparation and Performance on Catalytic Ozonation in Wastewater Treatment[J]. Chinese J. Inorg. Chem., 2017,33(6):985-992.
Shao M, Zhang Y H, Zeng L M, Tang X Y, Zhang J, Zhong L J, Wang B G. Ground-Level Ozone in the Pearl River Delta and the Roles of VOC and NO x in Its Production[J]. J. Environ. Manage., 2009,90(1):512-518. doi: 10.1016/j.jenvman.2007.12.008
Wolkoff P. Indoor Air Pollutants in Office Environments: Assessment of Comfort, Health, and Performance[J]. Int. J. Hyg. Environ. Health, 2013,216(4):371-394. doi: 10.1016/j.ijheh.2012.08.001
Tao Y B, Huang W, Huang X L, Zhong L J, Lu S E, Li Y, Dai L Z, Zhang Y H, Zhu T. Estimated Acute Effects of Ambient Ozone and Nitrogen Dioxide on Mortality in the Pearl River Delta of Southern China[J]. Environ. Health Perspect., 2012,120(3):393-398. doi: 10.1289/ehp.1103715
Gao W, Tie X X, Xu J M, Huang R J, Mao X Q, Zhou G Q, Chang L Y. Long-Term Trend of O3 in a Mega City (Shanghai), China: Characteristics, Causes, and Interactions with Precursors[J]. Sci. Total Environ., 2017,603:425-433.
ZHOU L N, CHEN Y Q, REN C J, GONG M C. Pd/MnOx+Pd/γ-Al2O3 Monolith Catalysts for Ground-Level Ozone Decomposition[J]. Chinese J. Inorg. Chem., 2013,29(11):2363-2369.
Kotelnikov S N, Stepanov E V. Role of Aqueous Aerosols in Ozone Decomposition in the Near-Surface Atmosphere[J]. Bull. Lebedev Phys. Inst., 2019,46(9):284-288. doi: 10.3103/S1068335619090045
Hellen H, Kuronen P, Hakola H. Heated Stainless Steel Tube for Ozone Removal in the Ambient Air Measurements of Mono - and Sesquiterpenes[J]. Atmos. Environ., 2012,57:35-40. doi: 10.1016/j.atmosenv.2012.04.019
Schumacher , Joachim H. The Mechanism of the Photochemical Decomposition of Ozone[J]. J. Am. Chem. Soc., 1930,52(6):2377-2391. doi: 10.1021/ja01369a026
SUN Y H, ZHANG M, YANG J J. Preparationand Characterization of Bimetal Core - Shell Structure Supported Au@Ag/TiO2 Catalyst[J]. Chinese J.Inorg. Chem., 2009,25(11):1965-1970. doi: 10.3321/j.issn:1001-4861.2009.11.014
Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdes H. Role of Lewis Acid Sites of ZSM-5 Zeolite on Gaseous Ozone Abatement[J]. Chem. Eng. J., 2013,231:281-286. doi: 10.1016/j.cej.2013.07.002
Wang H, Rassu P, Wang X, Li H W, Wang X R, Wang X Q, Feng X, Yin A X, Li P F, Jin X, Chen S L, Ma X J, Wang B. An Iron-Containing Metal-Organic Framework as a Highly Efficient Catalyst for Ozone Decomposition[J]. Angew. Chem. Int. Ed., 2018,57(50):16416-16420. doi: 10.1002/anie.201810268
Jia J B, Zhang P Y, Chen L. The Effect of Morphology of α-Mno2 on Catalytic Decomposition of Gaseous Ozone[J]. Catal. Sci. Technol., 2016,6(15):5841-5847. doi: 10.1039/C6CY00301J
Xu Z H, Yang W H, Si W Z, Chen J J, Peng Y, Li J H. A Novel γlike MnO2 Catalyst for Ozone Decomposition in High Humidity Conditions[J]. J. Hazard. Mater., 2021,420126641. doi: 10.1016/j.jhazmat.2021.126641
Liu Y, Yang W J, Zhang P Y, Zhang J Y. Nitric Acid-Treated Birnessite- Type MnO2: An Efficient and Hydrophobic Material for Humid Ozone Decomposition[J]. Appl. Surf. Sci., 2018,422:640-649.
Zhu G X, Zhu W, Lou Y, Ma J, Yao W Q, Zong R L, Zhu Y F. Encapsulate α-MnO2 Nanofiber within Graphene Layer to Tune Surface Electronic Structure for Efficient Ozone Decomposition[J]. Nat. Commun., 2021,12(1)4152. doi: 10.1038/s41467-021-24424-x
Zhang L, Yang J W, Wang A Q, Chai S H, Guan J, Nie L F, Fan G J, Han N, Chen Y F. High Performance Ozone Decomposition Spinel (Mn, Co)3O4 Catalyst Accelerating the Rate-Determining Step[J]. Appl. Catal. B-Environ., 2022,30120957.
Yu Y, Ji J, Li K, Huang H B, Shrestha R P, Oanh N T K, Winijkul E, Deng J G. Activated Carbon Supported MnO Nanoparticles for Efficient Ozone Decomposition at Room Temperature[J]. Catal. Today, 2020,355:573-579. doi: 10.1016/j.cattod.2019.05.063
Ma J Z, Wang C X, He H. Transition Metal Doped Cryptomelane- Type Manganese Oxide Catalysts for Ozone Decomposition[J]. Appl. Catal. B-Environ., 2017,201:503-510. doi: 10.1016/j.apcatb.2016.08.050
Dato A, Lee Z, Jeon K J, Erni R, Radmilovic V, Richardson T J, Frenklach M. Clean and Highly Ordered Graphene Synthesized in the Gas Phase[J]. Chem. Commun., 2009,40:6095-6097.
Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst- Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis[J]. ACS Nano, 2011,5(6):4350-4358. doi: 10.1021/nn103584t
Pieta I S, Rathi A, Pieta P, Nowakowski R, Holdynski M, Pisarek M, Kaminska A, Gawande M B, Zboril R. Electrocatalytic Methanol Oxidation over Cu, Ni and Bimetallic Cu-Ni nanoparticles Supported on Graphitic Carbon Nitride[J]. Appl. Catal. B -Environ., 2019,244:272-283. doi: 10.1016/j.apcatb.2018.10.072
Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G, Dai H J. Simultaneous Nitrogen Doping and Reduction of Graphene Oxide[J]. J. Am. Chem. Soc., 2009,131(43):15939-15944. doi: 10.1021/ja907098f
Sun Q L, Tang M, Hendriksen P V, Chen B. Biotemplated Fabrication of a 3D Hierarchical Structure of Magnetic ZnFe2O4/MgAl-LDH for Efficient Elimination of Dye from Water[J]. J. Alloy. Compd., 2020,829154552. doi: 10.1016/j.jallcom.2020.154552
Liu Z, Guo R T, Meng J S, Liu X, Wang X P, Li Q, Mai L Q. Facile Electrospinning Formation of Carbon-Confined Metal Oxide Cubein-Tube Nanostructures for Stable Lithium Storage[J]. Chem. Commun., 2017,53(59):8284-8287. doi: 10.1039/C7CC03727A
Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing[J]. ACS Nano, 2010,4(4):1790-1798. doi: 10.1021/nn100315s
Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049
Yang H, Gong L Q, Wang H M, Dong C L, Wa ng, J L, Qi K, Liu H F, Guo X P, Xia B Y. Preparation of Nickel-Iron Hydroxides by Microorganism Corrosion for Efficient Oxygen Evolution[J]. Nat. Commun., 2020,115075. doi: 10.1038/s41467-020-18891-x
Wang H, Peng B, Zhang R D, Chen H X, Wei Y. Synergies of Mn Oxidative Ability and ZSM-5 Acidity for 1, 2-Dichloroethane Catalytic Elimination[J]. Appl. Catal. B-Environ., 2020,276118922. doi: 10.1016/j.apcatb.2020.118922
Liu S L, Ji J, Yu Y, Huang H B. Facile Synthesis of Amorphous Mesoporous Manganese Oxides for Efficient Catalytic Decomposition of Ozone[J]. Catal. Sci. Technol., 2018,8:4264-4273. doi: 10.1039/C8CY01111G
Liu J, Ke J, Li D G, Sun H Q, Liang P, Duan X G, Tian W J, Tade M O, Liu S M, Wang S B. Oxygen Vacancies in Shape Controlled Cu2O/ Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants[J]. ACS Appl. Mater. Interfaces, 2017,9(13):11678-11688. doi: 10.1021/acsami.7b01605
Yang W J, Ren J N, Li J J, Zhang H W, Ma K, Wang Q W, Gao Z Y, Wu C C, Gates I D. A Novel Fe-Co Double-Atom Catalyst with High Low-Temperature Activity and Strong Water-Resistant for O3 Decomposition: A Theoretical Exploration[J]. J. Hazard. Mater., 2022,421126639. doi: 10.1016/j.jhazmat.2021.126639
Yang W J, Gao Z Y, Liu X S, Li X, Ding X L, Yan W P. Single-Atom Iron Catalyst with Single- Vacancy Graphene-Based Substrate as a Novel Catalyst for NO oxidation: A Theoretical Study[J]. Catal. Sci. Technol., 2018,8(16):4159-4168. doi: 10.1039/C8CY01225C
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654