Citation: Shi-Fang JIA, Xiu-Li HAO, Yan-Zhen WEN, Yan ZHANG. Synthesis, Characterization, and Antitumor Activity of Ruthenium(Ⅱ) Complexes Based on Schiff Base Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1919-1926. doi: 10.11862/CJIC.2022.191 shu

Synthesis, Characterization, and Antitumor Activity of Ruthenium(Ⅱ) Complexes Based on Schiff Base Ligand

  • Corresponding author: Yan ZHANG, yanzhang872010@163.com
  • Received Date: 25 November 2021
    Revised Date: 6 June 2022

Figures(7)

  • A series of new Schiff base ligands (BLn, n=1 - 3) and complexes have been synthesized. Binuclear ruthenium complexes [Ru(BLn)(bpy)2]2(ClO4)4, where bpy=2, 2'-bipyridine, BLn=((PyCHN)-Ph-O-C6H4) 2R (PyCHN=N-2-pyridylmethylene, R=none for Ru1, —C(CH3)2 for Ru2 and —SO2 for Ru3), have been prepared and characterized by element analysis, 1H NMR, IR, and mass spectrometry methods. The cytotoxicity to cervical cancer cells (Hela), gastric cancer cells (BGC823), gastric cancer cells (SGC-7901), and human normal embryonic lung fibroblasts cells (MRC-5) of the three complexes in vitro was evaluated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. It is worth noting that Ru1-Ru3 showed excellent antitumor effects in a cellular study for BGC823 in vitro. However, Ru3 exhibited the highest cytotoxicity to any cancer cells than Ru1 and Ru2.
  • 加载中
    1. [1]

      Rosenberg B, Vancamp L. Platinum Compounds: A New Class of Potent Antitumour Agents[J]. Nature, 1969,222:385-386. doi: 10.1038/222385a0

    2. [2]

      Esref Alkis M, Kelestemür Ü, Alan Y, Turan N, Buldurun K. Cobalt and Ruthenium Complexes with Pyrimidine Based Schiff Base: Synthesis, Characterization, Anticancer Activities and Electrochemotherapy Efficiency[J]. J. Mol. Struct., 2021,1226129402. doi: 10.1016/j.molstruc.2020.129402

    3. [3]

      Jiang G B, Zhang W Y, He M, Gu Y Y, Bai L, Wang Y J, Qiao Y, Du F. Anticancer Activity of Two Ruthenium (Ⅱ) Polypyridyl Complexes toward Hepatocellular Carcinoma HepG - 2 Cells[J]. Polyhedron, 2019,169:209-218. doi: 10.1016/j.poly.2019.05.017

    4. [4]

      Małecka M, Skoczynska A, Goodman D M, Hartinger C G, Budzisz E. Biological Properties of Ruthenium (Ⅱ)/(Ⅲ) Complexes with Flavonoids as Ligands[J]. Coord. Chem. Rev., 2021,436213849. doi: 10.1016/j.ccr.2021.213849

    5. [5]

      Jiang G B, Zhang W Y, He M, Gu Y Y, Bai L, Wang Y J, Yi Q Y, Du F. Systematic Evaluation of the Antitumor Activity of Three Ruthenium Polypyridyl Complexes[J]. J. Inorg. Biochem., 2021,225111616. doi: 10.1016/j.jinorgbio.2021.111616

    6. [6]

      Savić A, Gligorijević N, Aranđelović S. Antitumor Activity of Organoruthenium Complexes with Chelate Aromatic Ligands, Derived from 1, 10 - Phenantroline: Synthesis and Biological Activity[J]. J. Inorg. Biochem., 2020,202110869. doi: 10.1016/j.jinorgbio.2019.110869

    7. [7]

      Jana D, Zhao Y L. Strategies for Enhancing Cancer Chemodynamic Therapy Performance[J]. Exploration, 2022(2)20210238.

    8. [8]

      Hartinger C G, Jakupeca M A, Zorbas S, Groessl M, Egger A, Berger W, Zorbas H, Dyson P J, Keppler B K. KP1019, A New Redox-Active Anticancer Agent-Preclinical Development and Results of a Clinical Phase Ⅰ Study in Tumor Patients[J]. Chem. Biodivers., 2008,5(10):2140-2155. doi: 10.1002/cbdv.200890195

    9. [9]

      Leigen S, Burgers S A, Baas P, Pluim D, Tibben M, Werkhoven E, Alessio E, Sava G, Beijnen J H, Schellens J H M. Phase Ⅰ/Ⅱ Study with Ruthenium Compound NAMI - A and Gemcitabine in Patients with Non - small Cell Lung Cancer after First Line Therapy[J]. Invest. New Drugs, 2015,33(1):201-214. doi: 10.1007/s10637-014-0179-1

    10. [10]

      Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H, Wölfl S. Cellular Uptake, Cytotoxicity, and Metabolic Profiling of Human Cancer Cells Treated with Ruthenium (Ⅱ) Polypyridyl Complexes[J]. ChemMedChem, 2008,3(7):1104-1109. doi: 10.1002/cmdc.200800039

    11. [11]

      Lentz F, Drescher A, Lindauer A, Henke M, Hilger R A, Hartinger C G, Scheulen M E, Dittrich C, Keppler B K, Jaehde U. Pharmacokinetics of a Novel Anticancer Ruthenium Complex (KP1019, FFC14A) in a Phase Ⅰ Dose-Escalation Study[J]. Anti-Cancer Drugs, 2009,20(2):97-103. doi: 10.1097/CAD.0b013e328322fbc5

    12. [12]

      Zhong Y W, Wu S H, Burkhardt S E, Yao C J, Abruña H D. Mononuclear and Dinuclear Ruthenium Complexes of 2, 3-Di-2-pyridyl-5, 6-diphenylpyrazine: Synthesis and Spectroscopic and Electrochemical Studies[J]. Inorg. Chem., 2011,50(2):517-524. doi: 10.1021/ic101629w

    13. [13]

      Huang W K, Cheng C W, Chang S M, Lee Y P, Eric W G. Synthesis and Electron - Transfer Properties of Benzimidazole - Functionalized Ruthenium Complexes for Highly Efficient Dye - Sensitized Solar Cells[J]. Chem. Commun., 2010,46(47):8992-8994. doi: 10.1039/c0cc03517c

    14. [14]

      Garza-Ortiz A, Maheswari P U, Lutz M, Siegler M A, Reedijk J. Tuning the Cytotoxic Properties of New Ruthenium(Ⅲ) and Ruthenium(Ⅱ) Complexes with a Modified Bis(arylimino)pyridine Schiff Base Ligand Using Bidentate Pyridine - Based Ligands[J]. J. Biol. Inorg. Chem., 2014,19:675-689. doi: 10.1007/s00775-013-1083-4

    15. [15]

      Selvamurugan S, Viswanathamurthi P, Endo A, Hashimoto T, Natarajan K. Synthesis, Spectral Characterization, Antioxidant, Anticancer In Vitro, and DNA Cleavage Studies of a Series of Ruthenium (Ⅱ) Complexes Bearing Schiff Base Ligands[J]. J. Coord. Chem., 2013,66(22):4052-4066. doi: 10.1080/00958972.2013.858135

    16. [16]

      Sathiyaraj S, Sampath K, Butcher R J. Designing, Structural Elucidation, Comparison of DNA Binding, Cleavage, Radical Scavenging Activity and Anticancer Activity of Copper (Ⅰ) Complex with 5-Dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1, 2-dihydropyrazol-3-one Schiff Base Ligand[J]. Eur. J. Med. Chem., 2013,64:81-89. doi: 10.1016/j.ejmech.2013.03.047

    17. [17]

      Garza-Ortiz A, Maheswari P U, Siegler M, Spek A L, Reedijk J. A New Family of Ru (Ⅱ) Complexes with a Tridentate Pyridine Schiff-Base Ligand and Bidentate Co-ligands: Synthesis, Characterization, Structure and In Vitro Cytotoxicity Studies[J]. New J. Chem., 2013,37:3450-3460. doi: 10.1039/c3nj00415e

    18. [18]

      Sathiyaraj S, Butcher R J, Jayabalakrishnan C. Synthesis, Characterization, DNA Interaction and In Vitro Cytotoxicity Activities of Ruthenium(Ⅱ) Schiff Base Complexes[J]. J. Mol. Struct., 2012,1030:95-103. doi: 10.1016/j.molstruc.2012.07.021

    19. [19]

      Raja G, Butcher R J, Jayabalakrishnan C. Studies on Synthesis, Characterization, DNA Interaction and Cytotoxicity of Ruthenium(Ⅱ) Schiff Base Complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2012,94:210-215. doi: 10.1016/j.saa.2012.03.035

    20. [20]

      Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays[J]. J. Immunol. Methods, 1983,65(1/2):55-63.

    21. [21]

      BAI X F, MA X, XIE X X, SHAO M S, GUO N N, YAN N, YAO L. Synthesis and Anti-tumor Activity of Tubulysins Analogues[J]. Chem. J. Chinese Universities, 2017,38(1):47-55.  

    22. [22]

      Zhang Y, Cai P, Hu P C, Yang F, Cheng G Z. Synthesis, Characterization, Crystal Structure, Cytotoxicity, Apoptosis and Cell Cycle Arrest of Ruthenium (Ⅱ) Complex[Ru(bpy)2(adpa)] (PF6)2 (bpy=2, 2'-Bipyridine, adpa=4-(4-Aminophenyl) diazenyl-N-(pyridin-2-ylmethylene)aniline)[J]. RSC Adv., 2015,5:11591-11598. doi: 10.1039/C4RA12715C

    23. [23]

      Mendoza-Ferri M G, Hartinger C G, Mendoza M A, Groessl M, Egger A E, Eichinger R E, Mangrum J B, Farrell N P, Maruszak M, Bednarski P J, Klein F, Jakupec M A, Nazarov A A, Severin K, Keppler B K. Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity[J]. J. Med. Chem., 2009,52:916-925. doi: 10.1021/jm8013234

    24. [24]

      Giannini F, Paul L E H, Furrer J, Therrien B, Süss-Fink G. Highly Cytotoxic Diruthenium Trithiolato Complexes of the Type[(η6-p-MeC6H4Pri)2Ru2(μ2 - SR)3]+ : Synthesis, Characterization, Molecular Structure and In Vitro Anticancer Activity[J]. New J. Chem., 2013,37:3503-3511. doi: 10.1039/c3nj00476g

    25. [25]

      Mulyana Y, Weber D K, Buck D P, Motti C A, Collinsb J G, Keene F R. Oligonuclear Polypyridylruthenium (Ⅱ) Complexes Incorporating Flexible Polar and Non-polar Bridges: Synthesis, DNA-Binding and Cytotoxicity[J]. Dalton Trans., 2011,40:1510-1523. doi: 10.1039/c0dt01250e

    26. [26]

      Gorle A K, Ammit A J, Wallace L, Keene F R, Collins J G. Multinuclear Ruthenium(Ⅱ) Complexes as Anticancer Agents[J]. New J. Chem., 2014,38:4049-4059. doi: 10.1039/C4NJ00545G

    27. [27]

      DeBerardinis R J, Lum J J, Hatzivassiliou G, Thompson C B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation[J]. Cell Metab., 2008,7(1):11-20. doi: 10.1016/j.cmet.2007.10.002

    28. [28]

      Liu H Y, Yuan Y Z, Guo H Y, Mitchelson K, Zhang K, Xie L, Qin W Y, Lu Y, Wang J, Guo Y, Zhou Y X, He F C. Hepatitis B Virus Encoded X Protein Suppresses Apoptosis by Inhibition of the Caspase-Independent Pathway[J]. J. Proteome Res., 2012,11(10):4803-4813. doi: 10.1021/pr2012297

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(8)
  • Abstract views(837)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return