Citation: Bin GUO, Jing YANG, Wen-Xin LU, Peng WANG. Effect of Coordination Environment on Fenton-like Reactivity in Cu(Ⅱ) Metal-Organic Frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1981-1992. doi: 10.11862/CJIC.2022.185 shu

Effect of Coordination Environment on Fenton-like Reactivity in Cu(Ⅱ) Metal-Organic Frameworks

Figures(13)

  • Using copper acetate monohydrate as a copper source, 1D chain coordination polymer {[(Cu(OAc)2)2(L)]·3CH3CN}n (1, OAc-=CH3CO2-) was synthesized using 2, 6-bis(4'-pyridyl)-4-methylaniline (L) as bridged pyridine ligand, and 2D network coordination polymer {[Cu(IPA)(L)(H2O)]2·H2IPA·H2O}n (2) was prepared by L and isophthalic acid (H2IPA) as the co-ligand. It can be seen from the single crystal structure analysis that the copper atoms in complex 1 are located in the center of the tetrahedral coordination environment in the [CuNO4]2 clusters, and the copper atoms in complex 2 are in the [CuNO3] deformed hexahedral coordination environment. The comparative experiments on Fenton - like photocatalytic degradation with methylene blue as substrate show that the catalytic effect of complex 1 with Cu—N and Cu—O coordination environment was better than that of HKUST-1 with the same tetrahedral coordination environment. The comparison of the catalytic performance of complexes 1 and 2 also proves that the photocatalytic degradation activity of the open mononuclear copper coordination center was better than that of the copper coordination center in the cluster complex. Benefiting from the stability of the ligands and the existence of the framework structure, both complexes had higher catalytic activity and recyclability compared with the catalytic performance of the unconstrained copper acetate under the same conditions. The band gaps of the two complexes were calculated through UV-Vis spectra. The stability of the complexes after the reaction was confirmed by X-ray diffraction and inductively coupled plasma mass spectrometry. By adding free radical scavengers benzoquinone, tertiary butanol, and triethanolamine, it is confirmed that the catalytic process is a Fenton-like reaction mechanism of the hydroxyl radical process.
  • 加载中
    1. [1]

      Wei Y S, Zhang M, Zou R Q, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites[J]. Chem. Rev., 2020,120(21):12089-12174. doi: 10.1021/acs.chemrev.9b00757

    2. [2]

      Zuo Q, Liu T T, Chen C S, Ji Y, Gong X Q, Mai Y Y, Zhou Y F. Ultrathin Metal-Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution[J]. Angew. Chem. Int. Ed., 2019,58(30):10198-10203. doi: 10.1002/anie.201904058

    3. [3]

      Liu X, Xu Y S, Liu Q Q, Zhang W J. 8-Hydroxyquinoline and Eu3+ Incorporated Metal-Organic Framework Nanosystems with Tunable Emissions for White Light and Anticounterfeiting Applications[J]. ACS Appl. Nano Mater., 2021,4(1):313-321. doi: 10.1021/acsanm.0c02671

    4. [4]

      Daglar H, Erucar I, Keskin S. Exploring the Performance Limits of MOF/Polymer MMMs for O2/N2 Separation Using Computational Screening[J]. J. Membr. Sci., 2020,618118555.

    5. [5]

      Carney J, Roundy D, Simon C M. Statistical Mechanical Model of Gas Adsorption in a Metal-Organic Framework Harboring a Rotaxane Molecular Shuttle[J]. Langmuir, 2020,36(43):13112-13123. doi: 10.1021/acs.langmuir.0c02839

    6. [6]

      Fan S T, Qiu Z J, Xu R Y, Zhang S X, Chen Z H, Nie Z J, Shu H R, Guo K, Zhang S, Li B J. Ultrahigh Carbon Dioxide-Selective Composite Membrane Containing a γ-CD-MOF Layer[J]. ACS Appl. Mater. Interfaces, 2021,13(11):13034-13043. doi: 10.1021/acsami.0c18861

    7. [7]

      Li H, Shi L F, Li C, Fu X, Huang Q, Zhang B. Metal-Organic Framework Based on α-Cyclodextrin Gives High Ethylene Gas Adsorption Capacity and Storage Stability[J]. ACS Appl. Mater. Interfaces, 2020,12(30):34095-34104. doi: 10.1021/acsami.0c08594

    8. [8]

      Bhattacharya S, Ayass W W, Taffa D H, Nisar T, Balster T, Hartwig A, Wagner V, Wark M, Kortz U. Polyoxopalladate-Loaded Metal-Organic Framework (POP@MOF): Synthesis and Heterogeneous Catalysis[J]. Inorg. Chem., 2020,59(15):10512-10521. doi: 10.1021/acs.inorgchem.0c00875

    9. [9]

      Bibi R, Huang H L, Kalulu M, Shen Q H, Wei L F, Oderinde O, Li N X, Zhou J C. Synthesis of Amino-Functionalized Ti-MOF Derived Yolk-Shell and Hollow Heterostructures for Enhanced Photocatalytic Hydrogen Production under Visible Light[J]. ACS Sustain. Chem. Eng., 2019,7(5):4868-4877. doi: 10.1021/acssuschemeng.8b05352

    10. [10]

      Sun D R, Kim D P. Hydrophobic MOFs@Metal Nanoparticles@ COFs for Interfacially Confined Photocatalysis with High Efficiency[J]. ACS Appl. Mater. Interfaces, 2020,12(18):20589-20595. doi: 10.1021/acsami.0c04537

    11. [11]

      Fang Z B, Liu T T, Liu J, Jin S, Wu X P, Gong X Q, Wang K C, Yin Q, Liu T F, Cao R, Zhou H C. Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO2 Photoreduction via Rational Design of Coordination Spheres on Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2020,142(28):12515-12523. doi: 10.1021/jacs.0c05530

    12. [12]

      Tian H X, Zha M, Ding J G, Zhu L M, Li B L, Wu B. Visible-Light-Driven and Ultrasonic-Assisted Copper Metal-Organic Frameworks and Graphene Oxide Nanocomposite for Decolorization of Dyes[J]. J. Solid State Chem., 2021,304122627. doi: 10.1016/j.jssc.2021.122627

    13. [13]

      Li X L, Yu J R, Lu Z Y, Duan J X, Fry H C, Gosztola D J, Maindan K, Rajasree S S, Deria P. Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2021,143(37):15286-15297. doi: 10.1021/jacs.1c06629

    14. [14]

      Gwon K, Han I, Lee S, Kim Y, Lee D N. Novel Metal-Organic Framework-Based Photocrosslinked Hydrogel System for Efficient Antibacterial Applications[J]. ACS Appl. Mater. Interfaces, 2020,12(18):20234-20242. doi: 10.1021/acsami.0c03187

    15. [15]

      Hazra A, Bej S, Mondal A, Murmu N C, Banerjee P. Discerning Detection of Mutagenic Biopollutant TNP from Water and Soil Samples with Transition Metal-Containing Luminescence Metal-Organic Frameworks[J]. ACS Omega, 2020,5(26):15949-15961. doi: 10.1021/acsomega.0c01194

    16. [16]

      Yu H, Fan M, Liu Q, Su Z M, Li X, Pan Q Q, Hu X L. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+, Cr2O72-/CrO42- in a Water Environment[J]. Inorg. Chem., 2020,59(3):2005-2010. doi: 10.1021/acs.inorgchem.9b03364

    17. [17]

      Zhang P, Song B, Li Z, Zhang J J, Ni A Y, Chen J, Ni J, Liu S Q, Duan C Y. A "Turn-On" Cr3+ Ion Probe Based on Non-luminescent Metal-Organic Framework—New Strategy to Prepare a Recovery Probe[J]. J. Mater. Chem. A, 2021,9(23):13552-13561. doi: 10.1039/D1TA00062D

    18. [18]

      Nandi S, Reinsch H, Biswas S. An Acetoxy Functionalized Al(Ⅲ) Based Metal-Organic Framework Showing Selective "Turn On" Detection of Perborate in Environmental Samples[J]. Dalton Trans., 2020,49(48):17612-17620. doi: 10.1039/D0DT02422H

    19. [19]

      Ma X, Li H, Yang W J, Ma G Y, Zhen L, Jiang H L. Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis[J]. J. Am. Chem. Soc., 2021,143(31):12220-12229. doi: 10.1021/jacs.1c05032

    20. [20]

      Guo S, Zhao Y, Wang C, Jiang H Q, Chen G J. A Single-Atomic Noble Metal Enclosed Defective MOF via Cryogenic UV Photoreduction for CO Oxidation with Ultrahigh Efficiency and Stability[J]. ACS Appl. Mater. Interfaces, 2020,12(23):26068-26075. doi: 10.1021/acsami.0c06898

    21. [21]

      Stolar T, Prašnikar A, Martinez V, Karadeniz B, Bjelić A, Mali G, Friščić T, Likozar B, Užarević K. Scalable Mechanochemical Amorphization of Bimetallic Cu-Zn MOF-74 Catalyst for Selective CO2 Reduction Reaction to Methanol[J]. ACS Appl. Mater. Interfaces, 2021,13(2):3070-3077. doi: 10.1021/acsami.0c21265

    22. [22]

      Wu T K, Shi Y Z, Wang Z W, Liu C, Bi J H, Yu Y, Wu L. Unsaturated Ni Centers Mediated the Coordination Activation of Benzylamine for Enhancing Photocatalytic Activity over Ultrathin Ni(Ⅱ) MOF-74 Nanosheets[J]. ACS Appl. Mater. Interfaces, 2021,13(51):61286-61295. doi: 10.1021/acsami.1c20128

    23. [23]

      Yu L H, Fan W Q, He N, Liu Y C, Han X, Qin F Y, Ding J R, Zhu G X, Bai H Y, Shi W D. Effect of Unsaturated Coordination on Photoelectrochemical Properties of Ni-MOF/TiO2 Photoanode for Water Splitting[J]. Int. J. Hydrog. Energy, 2021,46(34):17741-17750.

    24. [24]

      Tang J X, Li P, Islamoglu T, Li S W, Zhang X, Son F A, Chen Z J, Mian M R, Lee S J, Wu J, Farha O K. Micropore Environment Regulation of Zirconium MOFs for Instantaneous Hydrolysis of an Organophosphorus Chemical[J]. Cell Rep. Phys. Sci., 2021,2(10)100612.

    25. [25]

      Liu G, Wang Y, Xue Q D, Wen Y C, Hong X H, Ullah K. TiO2/Cu-MOF/PPy Composite as a Novel Photocatalyst for Decomposition of Organic Dyes[J]. J. Mater. Sci.—Mater. Electron., 2021,32(4):4097-4109.

    26. [26]

      WANG P, ZHAO J J, WANG Z W, CAO D L, XU J Z. Synthesis and Structure Study of a Novel Bridged Bipyridine Compound[J]. Chinese J. Inorg. Chem., 2011,31(5):757-761.  

    27. [27]

      WANG Q B, LI X, WANG H Y, LU W X, WANG P. Regulation of Ligand Scale on Structure and Photocatalytic Degradation Activity of Complex: From Zero-Dimensional to One-Dimensional Cu(Ⅱ) Complexes[J]. Chinese J. Inorg. Chem., 2020,36(2):233-240.  

    28. [28]

      Shi C Y, Zhou X Y, Liu D, Li L T, Xu M Y, Sakiyama H, Muddassir M, Wang J. A New 3D High Connection Cu-Based MOF Introducing a Flexible Tetracarboxylic Acid Linker: Photocatalytic Dye Degradation[J]. Polyhedron, 2021,208115441. doi: 10.1016/j.poly.2021.115441

    29. [29]

      Li Y M, Chu S L, Shen H D, Xia Q N, Robertson A W, Masa J, Siddiqui U, Sun Z Y. Achieving Highly Selective Electrocatalytic CO2 Reduction by Tuning CuO-Sb2O3 Nanocomposites[J]. ACS Sustain. Chem. Eng., 2020,8(12):4948-4954. doi: 10.1021/acssuschemeng.0c00800

    30. [30]

      Shang Q G, Liu N N, You D, Cheng Q R, Liao G Y, Pan Z Q. The Application of Ni and Cu-MOFs as Highly Efficient Catalysts for Visible Light-Driven Tetracycline Degradation and Hydrogen Production[J]. J. Mater. Chem. C, 2021,9(1):238-248. doi: 10.1039/D0TC04733C

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    5. [5]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(25)
  • Abstract views(1193)
  • HTML views(455)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return