Citation: Xiang-Wen WANG. Layered Hexagonal Co1-xS Decorating N-Doped Carbon Nanotubes as a Sulfur Host for Li-S Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2065-2071. doi: 10.11862/CJIC.2022.180 shu

Layered Hexagonal Co1-xS Decorating N-Doped Carbon Nanotubes as a Sulfur Host for Li-S Batteries


  • Author Bio: E-mail: wxw_wyy@sina.com
  • Received Date: 25 February 2022
    Revised Date: 10 July 2022

Figures(5)

  • The design and assembly of nanostructured materials are devoted to improving the electrochemical properties of the Li-S batteries (LSBs) by synergistic effect. In this work, a composite of hexagonal Co1-xS nanosheets decorating N-doped carbon nanotube (Co1-xS-CNT) was successfully synthesized and used as a sulfur host for Li-S batteries (LSBs). In Co1-xS-CNT/S, the polar hexagonal Co1-xS nanosheets can absorb the lithium polysulfide through chemisorption, at the same time, the CNT can provide a highly conductive network. Based on the synergy of physical encapsulating and chemical trapping, the Co1-xS-CNT/S cathode exhibited excellent electrochemical performance, especially the superior cycle performance. After 170 cycles, the Co1-xS-CNT/S can maintain a discharge capacity of 405.6 mAh·g-1 at 0.5C, with a stable Coulombic efficiency (over 99.2%).
  • 加载中
    1. [1]

      Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable Lithium-Sulfur Battery[J]. Chem. Rev., 2014,114:11751-11787. doi: 10.1021/cr500062v

    2. [2]

      Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451:652-657. doi: 10.1038/451652a

    3. [3]

      Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Synthesis of the CoOOH Fine Nanoflake Film with the High Rate Capacitance Property[J]. J. Power Sources, 2006,158:779-783. doi: 10.1016/j.jpowsour.2005.09.052

    4. [4]

      Huang J H, Chen J T, Yao T, He J F, Jiang S, Sun Z H, Liu Q H, Cheng W, Hu F, Jiang Y, Pan Z Y, Wei S Q. CoOOH Nanosheets with High Mass Activity for Water Oxidation[J]. Angew. Chem. Int. Ed., 2015,54:8722-8727. doi: 10.1002/anie.201502836

    5. [5]

      Wang Z Y, Wang L, Liu S, Li G R, Gao X P. Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium-Sulfur Battery[J]. Adv. Funct. Mater., 2019,291901051. doi: 10.1002/adfm.201901051

    6. [6]

      Sun R, Bai Y, Luo M, Qu M X, Wang Z H, Sun W, Sun K N. Enhancing Polysulfide Confinement and Electrochemical Kinetics by Amorphous Cobalt Phosphide for Highly Efficient Lithium-Sulfur Batteries[J]. ACS Nano, 2021,15:739-750. doi: 10.1021/acsnano.0c07038

    7. [7]

      Tang H T, Yang J L, Zhang G, Liu C K, Wang H, Zhao Q H, Hu J T, Duan Y D, Pan F. Self-Assembled N-Graphene Nanohollows Enabling Ultrahigh Energy Density Cathode for Li-S Batteries[J]. Nanoscale, 2018,10:386-395. doi: 10.1039/C7NR06731C

    8. [8]

      Li Z, Jiang Y, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. A Highly Ordered Meso@Microporous Carbon-Supported Sulfur @Smaller Sulfur Core - Shell Structured Cathode for Li - S Batteries[J]. ACS Nano, 2014,8:9295-9303. doi: 10.1021/nn503220h

    9. [9]

      Liu T, Zhang L Y, Cheng B, Yu J G. Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage[J]. Adv. Energy Mater., 2019,91803900. doi: 10.1002/aenm.201803900

    10. [10]

      Lu S T, Cheng Y W, Wu X H, Liu J. Significantly Improved Long- Cycle Stability in High-Rate Li-S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers[J]. Nano Lett., 2013,13:2485-2489. doi: 10.1021/nl400543y

    11. [11]

      Chen M F, Jiang S X, Cai S, Wang X Y, Xiang K X, Ma Z Y, Song P, Fisher A C. Hierarchical Porous Carbon Modified with Ionic Surfactants as Efficient Sulfur Hosts for the High - Performance Lithium - Sulfur Batteries[J]. Chem. Eng. J., 2017,313:404-414. doi: 10.1016/j.cej.2016.12.081

    12. [12]

      Tan K, Liu Y, Tan Z L, Zhang J Y, Hou L R, Yuan C Z. High-Yield and In-Situ Fabrication of High-Content Nitrogen-Doped Grapheme Nanoribbons@Co/CoOOH as an Integrated Sulfur Host towards Li-S Batteries[J]. J. Mater. Chem. A, 2020,8:3048-3059. doi: 10.1039/C9TA13414J

    13. [13]

      Zhong W, Chen Q W, Yang F, Liu W, Li G D, Xie K, Ren M M. N, P Dual-Doped Carbon Nanotube with Superior High-Rate Sodium Storage Performance for Sodium Ion Batteries[J]. J. Electroanal. Chem., 2019,850113392. doi: 10.1016/j.jelechem.2019.113392

    14. [14]

      Ye H, Wang C Y, Zuo T T, Wang P F, Yin Y X, Zheng Z, Wang P, Cheng J, Cao F F, Guo Y G. Realizing a Highly Stable Sodium Battery with Dendrite-Free Sodium Metal Composite Anodes and O3- Type Cathodes[J]. Nano Energy, 2018,48:369-376. doi: 10.1016/j.nanoen.2018.03.069

    15. [15]

      Chen X D, Xu Y J, Du F H, Wang Y. Covalent Organic Framework Derived Boron/Oxygen Codoped Porous Carbon on CNTs as an Efficient Sulfur Host for Lithium-Sulfur Batteries[J]. Small Methods, 2019,111900338.

    16. [16]

      Huang S Z, Lim Y V, Zhang X M, Wang Y, Zheng Y, Kong D Z, Ding M, Yang S Y, Yang H Y. Regulating the Polysulfide Redox Conversion by Iron Phosphide Nanocrystals for High-Rate and Ultrastable Lithium-Sulfur Battery[J]. Nano Energy, 2018,51:340-348. doi: 10.1016/j.nanoen.2018.06.052

    17. [17]

      Wang Y K, Zhang R F, Pang Y C, Chen X, Lang J X, Xu J J, Xiao C H, Li H L, Xi K, Ding S J. Carbon@Titanium Nitride Dual Shell Nanospheres as Multi-functional Hosts for Lithium Sulfur Batteries[J]. Energy Storage Mater., 2019,16:228-235. doi: 10.1016/j.ensm.2018.05.019

    18. [18]

      Yang F, Zhong W, Ren M M, Liu W L, Li M, Li G D, Su L W. Poplar Flower-like Nitrogen-Doped Carbon Nanotube@VS4 Composites with Excellent Sodium Storage Performance[J]. Inorg. Chem. Front., 2020,7:4883-4891. doi: 10.1039/D0QI00985G

    19. [19]

      Zhou S Y, Yang S, Ding X W, Lai Y C, Nie H G, Zhang Y G, Chan D, Duan H, Huang S M, Yang Z. Dual-regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium-Sulfur Batteries[J]. ACS Nano, 2020,14:7538-7551. doi: 10.1021/acsnano.0c03403

    20. [20]

      Razzaq A A, Yuan X T, Chen Y J, Hu J P, Mu Q Q, Ma Y, Zhao X H, Miao L X, Ahn J H, Peng Y, Deng Z. Anchoring MOF-Derived CoS2 on Sulfurized Polyacrylonitrile Nanofibers for High Areal Capacity Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2020,8:1298-1306. doi: 10.1039/C9TA11390H

    21. [21]

      Li B H, Pan Y X, Luo B, Zao J, Xiao Y H, Lei S J, Cheng B C. MOF- Derived NiCo2S4@C as a Separator Modification Material for High- Performance Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2020,344135811. doi: 10.1016/j.electacta.2020.135811

    22. [22]

      Qiu Y, Fan L S, Wang M X, Yin X J, Wu X, Sun X, Tian D, Guan B, Tang D Y, Zhang N Q. Precise Synthesis of Fe-N2 Sites with High Activity and Stability for Long - Life Lithium - Sulfur Batteries[J]. ACS Nano, 2020,14:16105-16113. doi: 10.1021/acsnano.0c08056

    23. [23]

      Xiao T J, Yi F J, Yang M Z, Liu W L, Li M, Ren M M, Zhang X, Zhou Z. A Composite of CoNiP Quantum Dots-Decorated Reduced Graphene Oxide as a Sulfur Host for Li-S Batteries[J]. J. Mater. Chem. A, 2021,9:16692-16698. doi: 10.1039/D1TA03608D

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    4. [4]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    5. [5]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    6. [6]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    10. [10]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    11. [11]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    12. [12]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    13. [13]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    16. [16]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    17. [17]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    18. [18]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

Metrics
  • PDF Downloads(0)
  • Abstract views(435)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return