Citation: Wei-Wei TIE, Zhao ZHENG, Wei-Wei HE, Cong-Xu ZHU, Hong-Wei YUE, Shuai-Biao QIU. In-Situ Construction of BiOBr/Polypyrrole Composite for Photocatalytic Degradation of Anionic Dyes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1549-1556. doi: 10.11862/CJIC.2022.169 shu

In-Situ Construction of BiOBr/Polypyrrole Composite for Photocatalytic Degradation of Anionic Dyes

  • Corresponding author: Wei-Wei TIE, tieww929@163.com
  • Received Date: 22 March 2022
    Revised Date: 21 June 2022

Figures(13)

  • Thin bismuth bromide oxide (BiOBr) flake was prepared by photochemical reaction under dilute acid con- dition, and a new type of bismuth oxide/polypyrrole (BiOBr/PPy) composite was prepared in-situ through a one-step polymerization reaction of pyrrole dispersed in an aqueous solution containing ammonium persulfate and cetyltri- methylammonium bromide. The scanning electron microscope, transmission electron microscope, X-ray diffraction, Raman spectra, X-ray photoelectron spectra, ultraviolet and visible spectra, and fluorescence spectra were used to characterize the crystal structure, morphology feature, and photoelectric characteristics of the samples. The results showed that PPy was successfully modified onto BiOBr flakes with strong interaction and close contact. Compared with pure BiOBr, BiOBr/PPy composite showed superior visible light absorption efficiency and enhanced photocatalytic degradation activity of methyl orange (MO) dye. By optimizing the combination ratio of PPy and BiOBr, the deg- radation efficiency of MO (30 mg·L-1) by BiOBr/PPy-2 with a ca. 7% mass fraction of BiOBr was 87.3% in 50 min photoreaction, and the cyclic photocatalytic activity was reduced but still higher than that of pure BiOBr and pure PPy (10.4%). These results indicated that the strong interaction and good interface combination between BiOBr and PPy can effectively promote the separation efficiency of photogenerated electrons and holes. The photogenic holes separated and free radicals derived in this reaction played an important role in oxidative degradation of dye.
  • 加载中
    1. [1]

      Zou J P, Wu D D, Luo J M, Xing Q J, Luo X B, Dong W H, Luo S L, Du H M, Suib S L. A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2[J]. ACS Catal., 2016,6:6861-6867. doi: 10.1021/acscatal.6b01729

    2. [2]

      Jiang X H, Zhang L S, Liu H Y, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2020,59:23112-23116. doi: 10.1002/anie.202011495

    3. [3]

      Tie W W, Du Z Y, Yue H W, Bhattacharyya B B, Zheng Z, He W W, Lee S H. Self-Assembly of Carbon nanotube/Graphitic-like Flake/ BiOBr Nanocomposite with 1D/2D/3D Heterojunctions for Enhanced Photocatalytic Activity[J]. J. Colloid Interface Sci., 2020,579:862-871. doi: 10.1016/j.jcis.2020.06.088

    4. [4]

      Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. Carbon Nitride Supported High-Loading Fe Single Atom Catalyst for Activation of Peroxymonosulfate to Generate 1O2 with 100% Selectivity[J]. Angew. Chem. Int. Ed., 2021,60:21751-21755. doi: 10.1002/anie.202109488

    5. [5]

      Long D, Tu Y P, Chai Y Q, Yuan R. Photoelectrochemical Assay Based on SnO2/BiOBr p-n Heterojunction for Ultrasensitive DNA Detection[J]. Anal. Chem., 2021,93:12995-13000. doi: 10.1021/acs.analchem.1c02745

    6. [6]

      Zhu J Y, Li Y P, Wang X J, Zhao J, Wu Y S, Li F T. Simultaneous Phosphorylation and Bi Modification of BiOBr for Promoting Photocatalytic CO2 Reduction[J]. ACS Sustainable Chem. Eng., 2019,7:14953-14961. doi: 10.1021/acssuschemeng.9b03196

    7. [7]

      Liu Y, Hu Z F, Yu J C. Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets[J]. Chem. Mater., 2020,32:1488-1494. doi: 10.1021/acs.chemmater.9b04448

    8. [8]

      Tu X M, Luo S L, Chen G X, Li J H. One-Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr-Graphene Composite[J]. Chem. Eur. J., 2012,18(45):14359-14366. doi: 10.1002/chem.201200892

    9. [9]

      Thomas R T, Rasheed P A, Sandhyarani N. Synthesis of Nanotitania Decorated Few-Layer Graphene for Enhanced Visible Light Driven Photocatalysis[J]. J. Colloid Interface Sci., 2014,428:214-221. doi: 10.1016/j.jcis.2014.04.054

    10. [10]

      Liu X Q, Cai L. Novel Indirect Z-Scheme Photocatalyst of Ag Nanoparticles and Polymer Polypyrrole Co-Modified BiOBr for Photocatalytic Decomposition of Organic Pollutants[J]. Appl. Surf. Sci., 2018,445:242-254. doi: 10.1016/j.apsusc.2018.03.178

    11. [11]

      Liu X Q, Cai L. A Novel Double Z-Scheme BiOBr-GO-Polyaniline Photocatalyst: Study on the Excellent Photocatalytic Performance and Photocatalytic mechanism[J]. Appl. Surf. Sci., 2019,483:875-887. doi: 10.1016/j.apsusc.2019.03.273

    12. [12]

      Zhu M, Zhang L S, Liu S S, Wang D K, Qin Y C, Chen Y, Dai W L, Wang Y H, Xing Q J, Zou J P. Degradation of 4-Nitrophenol by Electrocatalysis and Advanced Oxidation Processes Using Co3O4@C Anode Coupled with Simultaneous CO2 Reduction via SnO2/CC Cathode[J]. Chin. Chem. Lett., 2020,31:1961-1965. doi: 10.1016/j.cclet.2020.01.017

    13. [13]

      Fan Y, Wang L C, Xing Q J, Wang D K, Jiang X H, Li G C, Zheng A M, Ai F R, Zou J P. Functional Groups to Modify g-C3N4 for Improved Photocatalytic Activity of Hydrogen Evolution from Water Splitting[J]. Chin. Chem. Lett., 2020,31:1648-1653. doi: 10.1016/j.cclet.2019.08.020

    14. [14]

      Tie W W, Zheng Z, Xu C, Zheng Z, Bhattacharyya S S, He W W, Lee S H. Facile Synthesis of Carbon Nanotubes Covalently Modified with ZnO Nanorods for Enhanced Photodecomposition of Dyes[J]. J. Colloid Interface Sci., 2019,537:652-660. doi: 10.1016/j.jcis.2018.11.042

    15. [15]

      Omastová M, Mosnáčková K, Fedorko P, Trchoslavá , Stejskal J. Polypyrrole/Silver Composites Prepared by Single-Step Synthesis[J]. Synth. Met., 2013,166:57-62. doi: 10.1016/j.synthmet.2013.01.015

    16. [16]

      Yan B X, Wang Y C, Jiang X Y, Liu K F, Guo L. Flexible Photocatalytic Composite Film of ZnO-Microrods/Polypyrrole[J]. ACS Appl. Mater. Interfaces, 2017,9:29113-29119. doi: 10.1021/acsami.7b08462

    17. [17]

      Harraz F A, Ismail A A, Al-Sayari S A, Al-Hajry A. Novel α-Fe2O3/ Polypyrrole Nanocomposite with Enhanced Photocatalytic Performance[J]. J. Photochem. Photobiol. A, 2015,299:18-24. doi: 10.1016/j.jphotochem.2014.11.001

    18. [18]

      Liu H J, Du C W, Li M, Zhang S S, Bai H K, Yang L, Zhang S Q. One-Pot Hydrothermal Synthesis of SnO2/BiOBr Heterojunction Photocatalysts for the Efficient Degradation of Organic Pollutants under Visible Light[J]. ACS Appl. Mater. Interfaces, 2018,10:28686-28694. doi: 10.1021/acsami.8b09617

    19. [19]

      Chen J Y, Xiao X Y, Wang Y, Lu M, Zeng X Y. Novel AgI/BiOBr/ reduced Graphene Oxide Z-Scheme Photocatalytic System for Efficient Degradation of Tetracycline[J]. J. Alloy. Compd., 2019,800:88-98. doi: 10.1016/j.jallcom.2019.06.004

    20. [20]

      Song N, Fan H Q, Tian H L. Reduced Graphene oxide/ZnO Nanohybrids: Metallic Zn Powder induced One-Step Synthesis for Enhanced Photocurrent and Photocatalytic Response[J]. Appl. Surf. Sci., 2015,353:580-587. doi: 10.1016/j.apsusc.2015.06.062

    21. [21]

      Cao G, Liu Z S, Feng P Z, Zhao Y L, Niu J N. Concave ultrathin BiOBr nanosheets with the Exposed {001} Facets: Room Temperature Synthesis and the Photocatalytic Activity[J]. Mater. Chem. Phys., 2017,199:131-137. doi: 10.1016/j.matchemphys.2017.06.056

    22. [22]

      Ghosh S, Rashmi D, Bera S, Basu R N. Functionalized Conjugated Polymer with Plasmonic Au Nanoalloy for Photocatalytic Hydrogen Generation under Visible-NIR[J]. Int. J. Hydrog. Energy, 2019,44(26):13262-13272. doi: 10.1016/j.ijhydene.2019.03.189

    23. [23]

      Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J, Fu X Z. Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite[J]. J. Phys. Chem. C, 2012,116:5764-5772. doi: 10.1021/jp211222w

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(2)
  • Abstract views(606)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return