Citation: Chang-Li ZHANG, Jing-Jing ZHANG, You SHEN, Jia-Cheng LU, Fang HUANG, Li XU. A Fas-Responsive Mitochondria-Targeting Fluorescent Probe Detecting Hypochlorite in Living Cells and Zebrafish[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1623-1632. doi: 10.11862/CJIC.2022.168 shu

A Fas-Responsive Mitochondria-Targeting Fluorescent Probe Detecting Hypochlorite in Living Cells and Zebrafish

Figures(6)

  • Herein, a mitochondria-targeting fluorescent probe Cou-Py has been designed and synthesized for sensing hypochlorite (ClO-). Cou-Py exhibited very weak fluorescence due to the C=N isomerization of the oxime group in the excited state and recovers fluorescence within 5 s based on a ClO--triggered deoximation reaction. Additionally, Cou-Py showed high selectivity toward ClO- over other reactive oxygen species (ROS) and owned a low detection limit (6.87 nmol·L-1) for ClO-. Importantly, Cou-Py has been successfully employed for visualizing ClO- in the mitochondria of MCF-7 cells as well as zebrafish larvae.
  • 加载中
    1. [1]

      D′Autréaux B, Toledano M B. ROS as Signalling Molecules: Mechanisms that Generate Specificity in ROS Homeostasis[J]. Nat. Rev. Mol. Cell Biol., 2017,8(10):813-824.

    2. [2]

      Winterbourn C C. Reconciling the Chemistry and Biology of Reactive Oxygen Species[J]. Nat. Chem. Biol., 2008,4(5):278-286. doi: 10.1038/nchembio.85

    3. [3]

      Harrison J E, Schultz J. Studies on the Chlorinating Activity of Myeloperoxidase[J]. J. Biol. Chem., 1976,251(5):1371-1374. doi: 10.1016/S0021-9258(17)33749-3

    4. [4]

      Prütz W A, Kissner R, Nauser T, Koppenol W H. On the Oxidation of Cytochrome c by Hypohalous Acids[J]. Arch. Biochem. Biophys., 2001,389(1):110-122. doi: 10.1006/abbi.2001.2321

    5. [5]

      Sam C H, Lu H K. The Role of Hypochlorous Acid as One of the Reactive Oxygen Species in Periodontal Disease[J]. J. Dent. Sci., 2009,4(2):45-54. doi: 10.1016/S1991-7902(09)60008-8

    6. [6]

      Khatib S, Musa R, Vaya J. An Exogenous Marker: A Novel Approach for the Characterization of Oxidative Stress[J]. Bioorg. Med. Chem., 2007,15(11):3661-3666. doi: 10.1016/j.bmc.2007.03.052

    7. [7]

      Steinbeck M J, Nesti L J, Sharkey P F, Parvizi J. Myeloperoxidase and Chlorinated Peptides in Osteoarthritis: Potential Biomarkers of the Disease[J]. J. Orthop. Res., 2007,25(9):1128-1135. doi: 10.1002/jor.20400

    8. [8]

      Murphy M P, Smith R A J. Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations[J]. Annu. Rev. Pharmacol. Toxicol., 2007,47(1):629-656. doi: 10.1146/annurev.pharmtox.47.120505.105110

    9. [9]

      Chalmers S, Caldwell S T, Quin C, Prime T A, James A M, Cairns A G, Murphy M P, McCarron J G, Hartley R C. Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore[J]. J. Am. Chem. Soc., 2012,134(2):758-761. doi: 10.1021/ja2077922

    10. [10]

      Niu W F, Guo L, Li Y H, Shuang S M, Dong C, Wong M S. HighlySelective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria[J]. Anal. Chem., 2016,88(3):1908-1914. doi: 10.1021/acs.analchem.5b04329

    11. [11]

      Chen Y C, Bai Y, Han Z, He W J, Guo Z J. Photoluminescence Imaging of Zn2+ in Living Systems[J]. Chem. Soc. Rev., 2015,44(14):4517-4546. doi: 10.1039/C5CS00005J

    12. [12]

      Qian F, Zhang C L, Zhang Y M, He W J, Gao X, Hu P, Guo Z J. Visible Light Excitable Zn2+ Fluorescent Sensor Derived from an Intra-molecular Charge Transfer Fluorophore and Its In Vitro and In Vivo Application[J]. J. Am. Chem. Soc., 2009,131(4):1460-1468. doi: 10.1021/ja806489y

    13. [13]

      Wu D, Chen L Y, Xu Q L, Chen X Q, Yoon J. Design Principles, Sensing Mechanisms, and Applications of Highly Specific Fluorescent Probes for HOCl/OCl-[J]. Acc. Chem. Res., 2019,52(8):2158-2168. doi: 10.1021/acs.accounts.9b00307

    14. [14]

      Xu J C, Yuan H Q, Qin C Q, Zeng L T, Bao G M. A Mitochondria-Targeted Near-Infrared Probe for Colorimetric and Ratiometric Fluorescence Detection of Hypochlorite in Living Cells[J]. RSC Adv., 2016,6(109):107525-107532. doi: 10.1039/C6RA22868B

    15. [15]

      Xu Q L, Heo C H, Kim J A, Lee H S, Hu Y, Kim D, Swamy K M K, Kim G, Nam S J, Kim H M, Yoon J. A Selective Imidazoline-2-thione-Bearing Two-Photon Fluorescent Probe for Hypochlorous Acid in Mitochondria[J]. Anal. Chem., 2016,88(12):6615-6620. doi: 10.1021/acs.analchem.6b01738

    16. [16]

      Li K, Hou J T, Yang J, Yu X Q. A Tumor-Specific and Mitochondria-Targeted Fluorescent Probe for Real-Time Sensing of Hypochlorite in Living Cells[J]. Chem. Commun., 2017,53(40):5539-5541. doi: 10.1039/C7CC01679D

    17. [17]

      Ren M G, Zhou K, He L W, Lin W Y. Mitochondria and Lysosome-Targetable Fluorescent Probes for HOCl: Recent Advances and Perspectives[J]. J. Mater. Chem. B, 2018,6(12):1716-1733. doi: 10.1039/C7TB03337K

    18. [18]

      Zhong X L, Yang Q, Chen Y S, Jiang Y L, Wang B X, Shen J. A Mitochondria-Targeted Fluorescent Probe Based on Coumarin-Pyridine Derivatives for Hypochlorite Imaging in Living Cells and Zebrafish[J]. J. Mater. Chem. B, 2019,7(46):7332-7337. doi: 10.1039/C9TB01948K

    19. [19]

      Li M Y, Li K, Liu Y H, Zhang H, Yu K K, Liu X, Yu X Q. Mitochondria-Immobilized Fluorescent Probe for the Detection of Hypochlorite in Living Cells, Tissues, and Zebrafishes[J]. Anal. Chem., 2020,92(4):3262-3269. doi: 10.1021/acs.analchem.9b05102

    20. [20]

      Zhong X L, Yang Q, Chen Y S, Jiang Y L, Dai Z H. Aggregation-Induced Fluorescence Probe for Hypochlorite Imaging in Mitochondria of Living Cells and Zebrafish[J]. J. Mater. Chem. B, 2020,8(33):7375-7381. doi: 10.1039/D0TB01496F

    21. [21]

      Hou J T, Li K, Yang J, Yu K K, Liao Y X, Ran Y Z, Liu Y H, Zhou X D, Yu X Q. A Ratiometric Fluorescent Probe for In Situ Quantification of Basal Mitochondrial Hypochlorite in Cancer Cells[J]. Chem. Commun., 2015,51(31):6781-6784. doi: 10.1039/C5CC01217A

    22. [22]

      Teng H, Tian J Y, Sun D H, Xiu M X, Zhang Y H, Qiang X Y, Tang H Y, Guo Y. A Mitochondria-Specific Fluorescent Probe Based on Triazolopyridine Formation for Visualizing Endogenous Hypochlorous Acid in Living Cells and Zebrafish[J]. Sens. Actuators B, 2020,319128288. doi: 10.1016/j.snb.2020.128288

    23. [23]

      Yang Q, Zhong X L, Chen Y S, Yang J, Jin C, Jiang Y L. A Mitochondria-Targeted Fluorescent Probe for Hypochlorite Sensing and Its Application in Bioimaging[J]. Analyst, 2020,145(8):3100-3105. doi: 10.1039/D0AN00245C

    24. [24]

      Huang L, Su W T, Zhao Y P, Zhan J T, Lin W Y. Synthesis, Molecular Docking Calculation, Fluorescence and Bioimaging of Mitochondria-Targeted Ratiometric Fluorescent Probes for Sensing Hypochlorite In Vivo[J]. J. Mater. Chem. B, 2021,9(11):2666-2673. doi: 10.1039/D0TB02735A

    25. [25]

      Xu J H, Wang C Y, Ma Q J, Zhang H T, Tian M J, Sun J G, Wang B Y, Chen Y C. Novel Mitochondria-Targeting and Naphthalimidebased Fluorescent Probe for Detecting HClO in Living Cells[J]. ACS Omega, 2021,6(22):14399-14409. doi: 10.1021/acsomega.1c01271

    26. [26]

      Yuan L, Wang L, Agrawalla B K, Park S J, Zhu H, Sivaraman B, Peng J J, Xu Q H, Chang Y T. Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model[J]. J. Am. Chem. Soc., 2015,137(18):5930-5938. doi: 10.1021/jacs.5b00042

    27. [27]

      Zheng A S, Liu H, Peng C H, Gao X N, Xu K H, Tang B. A Mitochondria-Targeting Near-Infrared Fluorescent Probe for Imaging Hypochlorous Acid in Cells[J]. Talanta, 2021,226122152. doi: 10.1016/j.talanta.2021.122152

    28. [28]

      Shen B X, Qian Y, Qi Z Q, Lu C G, Sun Q, Xia X, Cui Y P. Near-Infrared BODIPY-Based Two-Photon ClO-Probe Based on Thiosemicarbazide Desulfurization Reaction: Naked-Eye Detection and Mitochondrial Imaging[J]. J. Mater. Chem. B, 2017,5(29):5854-5861. doi: 10.1039/C7TB01344B

    29. [29]

      Shi D L, Chen S Q, Dong B, Zhang Y H, Sheng C Q, James TD, Guo Y. Evaluation of HOCl-Generating Anticancer Agents by an Ultrasensitive Dual-Mode Fluorescent Probe[J]. Chem. Sci., 2019,10(13):3715-3722. doi: 10.1039/C9SC00180H

    30. [30]

      Kaufmann S H E, Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N. Severe Impairment in Early Host Defense against Candida albicans in Mice Deficient in Myeloperoxidase[J]. Infect. Immun., 1999,67(4):1828-1836. doi: 10.1128/IAI.67.4.1828-1836.1999

    31. [31]

      Klebanoff S J. Myeloperoxidase: Friend and Foe[J]. J. Leukoc. Biol., 2005,77(5):598-625. doi: 10.1189/jlb.1204697

    32. [32]

      Li H Y, Li X H, Wu X F, Shi W, Ma H M. Observation of the Generation of ONOO-in Mitochondria under Various Stimuli with a Sensitive Fluorescence Probe[J]. Anal. Chem., 2017,89(10):5519-5525. doi: 10.1021/acs.analchem.7b00503

    33. [33]

      Zhu B C, Zhang M, Wu L, Zhao Z Y, Liu C Y, Wang Z K, Duan Q X, Wang Y W, Jia P. A Highly Specific Far-Red Fluorescent Probe for Imaging Endogenous Peroxynitrite in the Mitochondria of Living Cells[J]. Sens. Actuators B, 2018,257:436-441. doi: 10.1016/j.snb.2017.10.170

    34. [34]

      Yang J J, Zheng W B, Shen Y, Xu Y Z, Lv G L, Li C X. A Novel Near-Infrared Fluorescent Probe Based on Phenoxazine for the Specific Detection of HOCl[J]. J. Lumin., 2020,226117460. doi: 10.1016/j.jlumin.2020.117460

    35. [35]

      Dong S Q, Zhang L J, Lin Y J, Ding C F, Lu C. Luminescent Probes for Hypochlorous Acid In Vitro and In Vivo[J]. Analyst, 2020,145(15):5068-5089. doi: 10.1039/D0AN00645A

    36. [36]

      Lin W Y, Long L L, Chen B B, Tan W. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction[J]. Chem. Eur. J., 2009,15(10):2305-2309. doi: 10.1002/chem.200802054

    37. [37]

      Shi Y, Huo F J, Yin C X. Malononitrile as the'Double-Edged Sword'of Passivation-Activation Regulating Two ICT to Highly Sensitive and Accurate Ratiometric Fluorescent Detection for Hypochlorous Acid in Biological System[J]. Sens. Actuators B, 2020,325128793. doi: 10.1016/j.snb.2020.128793

    38. [38]

      Yang X F, Shi W D, Dong X L, Cui C Y, Huang X, Wang X, Xie HX, Li Y X, Yan M, Cui Y, Sun G X. A Simple but Sensitive and Efficient Fluorescent Probe for"Turn-On"Sensing of ClO-[J]. Polyhedron, 2020,185114563. doi: 10.1016/j.poly.2020.114563

    39. [39]

      ZHANG J J, YAN M, LU W, XU L, WANG X Q. Design, Synthesis and Fluorescence Imaging Application of Hypochlorite Probe Based on Coumarin-Oxime[J]. Chinese J. Inorg. Chem., 2021,37(6):1071-1079.  

    40. [40]

      Wang B S, Li P, Yu F B, Song P, Sun X F, Yang S Q, Lou Z R, Han K L. A Reversible Fluorescence Probe Based on Se-BODIPY for the Redox Cycle between HClO Oxidative Stress and H2S Repair in Living Cells[J]. Chem. Commun., 2013,49(10):1014-1016. doi: 10.1039/C2CC37803E

    41. [41]

      Liu S R, Wu S P. Hypochlorous Acid Turn-On Fluorescent Probe Based on Oxidation of Diphenyl Selenide[J]. Org. Lett., 2013,15(4):878-881. doi: 10.1021/ol400011u

    42. [42]

      Qin Q P, Wang Z F, Huang X L, Tan M X, Zou B Q, Liang H. Strong In Vitro and Vivo Cytotoxicity of Novel Organoplatinum(Ⅱ) Complexes with Quinoline-Coumarin Derivatives[J]. Eur. J. Med. Chem., 2019,184111751. doi: 10.1016/j.ejmech.2019.111751

    43. [43]

      Sun Q, Xu J J, Ji C L, Shaibani M S S, Li Z, Lim K, Zhang C W, Li L, Liu Z P. Ultrafast Detection of Peroxynitrite in Parkinson′s Disease Models Using a Near-Infrared Fluorescent Probe[J]. Anal. Chem., 2020,92(5):4038-4045. doi: 10.1021/acs.analchem.9b05599

    44. [44]

      Carta F, Vullo D, Maresca A, Scozzafava A, Supuran C T. New Chemotypes Acting as Isozyme-Selective Carbonic Anhydrase Inhibitors with Low Affinity for the Offtarget Cytosolic Isoform Ⅱ[J]. Bioorg. Med. Chem. Lett., 2012,22(6):2182-2185. doi: 10.1016/j.bmcl.2012.01.129

  • 加载中
    1. [1]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    6. [6]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    7. [7]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    8. [8]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    9. [9]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    10. [10]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    11. [11]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    12. [12]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    13. [13]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    14. [14]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    15. [15]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    16. [16]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    17. [17]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    18. [18]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

Metrics
  • PDF Downloads(2)
  • Abstract views(269)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return