Citation: Wen-Hui HE, Xing YE, Zi-Yu WANG, Zhen-Hong WEI, Wen-Jun RAO, Hu CAI. Chemical Modification of Cyclen to Raise the Phase Transition Temperature of Its Perrhenic Compounds[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1586-1592. doi: 10.11862/CJIC.2022.162 shu

Chemical Modification of Cyclen to Raise the Phase Transition Temperature of Its Perrhenic Compounds

Figures(4)

  • A methyl-substituted 1, 4, 7, 10-tetraazacyclododecane (N-methyl-1, 4, 7, 10-tetraazacyclododecane, Me-cyclen) was isolated by chemical modification of 1, 4, 7, 10-tetraazacyclododecane (cyclen) with iodomethane. Reactions of cyclen and Me-cyclen with two equivalents of HReO4 led to phase transition molecules (cyclen)(ReO4)2 (1) and (Me -cyclen)(ReO 4)2 (2), respectively. Differential scanning calorimetry and dielectric studies revealed that compounds 1 and 2 show reversible phase transition with temperatures at 324 K for 1 and 384 K for 2. The research results demonstrate a way that the high-temperature phase transition organic-inorganic hybrid materials can be obtained by reducing molecular symmetry through chemical modification of organic amines.
  • 加载中
    1. [1]

      Li W D, Ding E Y. Preparation and Characterization of a Novel SolidLiquid PCM: Butanediol Di-Stearate[J]. Mater. Lett., 2007,61(7):1526-1528. doi: 10.1016/j.matlet.2006.07.072

    2. [2]

      Su C Y, Lun M M, Chen Y D, Zhou Y C, Zhang Z X, Chen M, Huang P Z, Fu D W, Zhang Y. Hybrid Optical-Electrical Perovskite Can be a Ferroelastic Semiconductor[J]. CCS Chem., 2022,4(6):2009-2019. doi: 10.31635/ccschem.021.202101073

    3. [3]

      Wei Z H, Jiang Z T, Zhang X X, Li M L, Tang Y Y, Chen X G, Cai H, Xiong R G. Rational Design of Ceramic-like Molecular Ferroelectric by Quasi-spherical Theory[J]. J. Am. Chem. Soc., 2020,142:1995-2000. doi: 10.1021/jacs.9b11665

    4. [4]

      Sha T T, Xiong Y A, Pan Q, Chen X G, Song X J, Yao J, Miao S R, Jing Z Y, Feng Z J, You Y M. Fluorinated 2D Lead Iodide Perovskite Ferroelectrics[J]. Adv. Mater., 2019,311901843.  

    5. [5]

      Wang C H, Lin T, Li N, Zheng H P. Heat Transfer Enhancement of Phase Change Composite Material: Copper Foam/Paraffin[J]. Renew. Energy, 2016,96:960-965. doi: 10.1016/j.renene.2016.04.039

    6. [6]

      Zhang Y, Wang L J, Tang B T, Lu R W, Zhang S F. Form-Stable Phase Change Materials with High Phase Change Enthalpy from the Composite of Paraffin and Cross-Linking Phase Change Structure[J]. Appl. Energy, 2016,184:241-246. doi: 10.1016/j.apenergy.2016.10.021

    7. [7]

      Mohamed S A, Al-Sulaiman F A, Ibrahim N I, Zahir M H, Al-Ahmed A, Saidur R, Yilbas B S, Sahin A Z. A Review on Current Status and Challenges of Inorganic Phase Change Materials for Thermal Energy Storage Systems[J]. Renew. Sust. Energ. Rev., 2017,70:1072-1089. doi: 10.1016/j.rser.2016.12.012

    8. [8]

      Tong X, Li N Q, Zeng M, Wang Q W. Organic Phase Change Materials Confined in Carbon-Based Materials for Thermal Properties Enhancement: Recent Advancement and Challenges[J]. Renew. Sust. Energ. Rev., 2019,108:398-422. doi: 10.1016/j.rser.2019.03.031

    9. [9]

      Matsuishi K, Ishihara T, Onari S, Chang Y H, Park C H. Optical Properties and Structural Phase Transitions of Lead-Halide Based Inorganic-Organic 3D and 2D Perovskite Semiconductors under High Pressure.Phys[J]. Status Solidi B-Basic Solid State Phys., 2004,241(14):3328-3333. doi: 10.1002/pssb.200405229

    10. [10]

      Zhang Y Q, Li M, Xu G C. Phase Transition and Dielectric Response Originating from Disorder-Order Transition in the In-Based Organic-Inorganic Hybrid Material[NH3(CH2)5NH3][InCl 5(H2O)] ·H2O[J]. Eur. J. Inorg. Chem., 2021,2021(13):1251-1255. doi: 10.1002/ejic.202001156

    11. [11]

      Li M, Xu G C, Xin W B, Zhang Y Q. Switchable Dielectric Behavior and Order-Disorder Phase Transition in a New Organic-Inorganic Hybrid Compound: (CH3NH 3)4[InCl6]Cl[J]. Eur. J. Inorg. Chem., 2020,2020:626-630. doi: 10.1002/ejic.201901303

    12. [12]

      Lv X H, Liao W Q, Li P F, Wang Z X, Mao C Y, Zhang Y. Dielectric and Photoluminescence Properties of a Layered Perovskite-Type Organic-Inorganic Hybrid Phase Transition Compound: NH3(CH2)5 NH3MnCl4[J]. J. Mater. Chem. C, 2016,4:1881-1885. doi: 10.1039/C5TC04114G

    13. [13]

      Billing D G, Lemmerer A. Synthesis, Characterization and Phase Transitions in the Inorganic-Organic Layered Perovskite-Type Hybrids (CnH2n +1NH 3)2PbI4, n=4, 5 and 6[J]. Acta Crystallogr. Sect. B, 2007,B63:735-747.  

    14. [14]

      Billing D G, Lemmerer A. Synthesis, Characterization and Phase Transitions of the Inorganic-Organic Layered Perovskite-Type Hybrids (CnH2n +1NH 3)2PbI4 (n=12, 14, 16 and 18)[J]. New J. Chem., 2008,32(10):1736-1746. doi: 10.1039/b805417g

    15. [15]

      Wang B, Ma D W, Zhao H X, Long L S, Zheng L S. Room Temperature Lead-Free Multiaxial Inorganic-Organic Hybrid Ferroelectric[J]. Inorg. Chem., 2019,58(20):13953-13959. doi: 10.1021/acs.inorgchem.9b01793

    16. [16]

      Fu X Q, Hang T, Ye Q, Xiong R G. Synthesis, Structure and Dielectric Deuterated Effect of a Novel Organic-Inorganic Hybrid Compound[J]. Inorg. Chem. Commun., 2011,14(1):281-284. doi: 10.1016/j.inoche.2010.11.014

    17. [17]

      Tang Y Y, Ai Y, Liao W Q, Li P F, Wang Z X, Xiong R G. H/F-Substitution-Induced Homochirality for Designing High-Tc Molecular Perovskite Ferroelectrics[J]. Adv. Mater., 2019,31(29)1902163. doi: 10.1002/adma.201902163

    18. [18]

      Cheng H, Yang M J, Xu Y Q, Li M Z, Ai Y. Target Designing Phase Transition Materials through Halogen Substitution[J]. ChemPhysChem, 2021,22(8):752-756. doi: 10.1002/cphc.202100040

    19. [19]

      Ye Q, Zhao H, Qu Z R, Fu D W, Xiong R G, Cui Y P, Akutagawa T, Chan P W H, Nakamura T. Large Anisotropy and Effect of Deuteration on Permittivity in an Olefin Copper(I) Complex[J]. Angew. Chem. Int. Ed., 2007,46(36):6852-6856. doi: 10.1002/anie.200700629

    20. [20]

      Hua X N, Liao W Q, Tang Y Y, Li P F, Shi P P, Zhao D, Xiong R G. A Room-Temperature Hybrid Lead Iodide Perovskite Ferroelectric[J]. J. Am. Chem. Soc., 2018,140(38):12296-12302. doi: 10.1021/jacs.8b08286

    21. [21]

      Ai Y, Chen X G, Shi P P, Tang Y Y, Li P F, Liao W Q, Xiong R G. Fluorine Substitution Induced High Tc of Enantiomeric Perovskite Ferroelectrics: (R)-and (S)-3-(Fluoropyrrolidinium)MnCl3[J]. J. Am. Chem. Soc., 2019,141(10):4474-4479. doi: 10.1021/jacs.9b00886

    22. [22]

      Shi P P, Lu S Q, Song X J, Chen X G, Liao W Q, Li P F, Tang Y Y, Xiong R G. Two-Dimensional Organic-Inorganic Perovskite Ferroelectric Semiconductors with Fluorinated Aromatic Spacers[J]. J. Am. Chem. Soc., 2019,141(45):18334-18340. doi: 10.1021/jacs.9b10048

    23. [23]

      Wang Z X, Zhang Y, Tang Y Y, Li P F, Xiong R G. Fluoridation Achieved Antiperovskite Molecular Ferroelectric in (CH3)2(F-CH2CH2)NH3(CdCl3)(CdCl 4)[J]. J. Am. Chem. Soc., 2019,141(10):4372-4378. doi: 10.1021/jacs.8b13109

    24. [24]

      Chu L L, Zhang T, Gao Y F, Zhang W Y, Shi P P, Ye Q, Fu D W. Fluorine Substitution in Ethylamine Triggers Second Harmonic Generation in Noncentrosymmetric Crystalline NH3CH2CH2F3BiCl6[J]. Chem. Mater., 2020,32(16):6968-6974. doi: 10.1021/acs.chemmater.0c02223

    25. [25]

      Ye H Y, Zhou Q H, Niu X H, Liao W Q, Fu D W, Zhang Y, You Y M, Wang J L, Chen Z N, Xiong R G. High-Temperature Ferroelectricity and Photoluminescence in a Hybrid Organic-Inorganic Compound: (3-Pyrrolinium)MnCl3[J]. J. Am. Chem. Soc., 2015,137(40):13148-13154. doi: 10.1021/jacs.5b08290

    26. [26]

      Li P F, Tang Y Y, Wang Z X, Ye H Y, You Y M, Xiong R G. Anomalously Rotary Polarization Discovered in Homochiral Organic Ferroelectrics[J]. Nat. Commun., 2016,713635. doi: 10.1038/ncomms13635

    27. [27]

      Zhang W Y, Tang Y Y, Li P F, Shi P P, Liao W Q, Fu D W, Ye H Y, Zhang Y, Xiong R G. Precise Molecular Design of High-Tc 3D Organic-Inorganic Perovskite Ferroelectric: MeHdabco RbI3 (MeHdabco=N-Methyl-1, 4-diazoniabicyclo[2.2.2]octane)[J]. J. Am. Chem. Soc., 2017,139(31):10897-10902. doi: 10.1021/jacs.7b06013

    28. [28]

      Liao W Q, Zhao D, Tang Y Y, Zhang Y, Li P F, Shi P P, Chen X G, You Y M, Xiong R G. A Molecular Perovskite Solid Solution with Piezoelectricity Stronger than Lead Zirconate Titanate[J]. Science, 2019,363(6432):1206-1210. doi: 10.1126/science.aav3057

    29. [29]

      Zhang H Y, Tang Y Y, Shi P P, Xiong R G. Toward the Targeted Design of Molecular Ferroelectrics: Modifying Molecular Symmetries and Homochirality[J]. Acc. Chem. Res., 2019,52(7):1928-1938. doi: 10.1021/acs.accounts.8b00677

    30. [30]

      You Y M, Liao W Q, Zhao D, Ye H Y, Zhang Y, Zhou Q, Niu X, Wang J, Li P F, Fu D W, Wang Z, Gao S, Yang K, Liu J M, Li J, Yan Y, Xiong R G. An Organic-Inorganic Perovskite Ferroelectric with Large Piezoelectric Response[J]. Science, 2017,357(6348):306-309. doi: 10.1126/science.aai8535

    31. [31]

      Li P F, Tang Y Y, Liao W Q, Shi P P, Hua X N, Zhang Y, Wei Z, Cai H, Xiong R G. Experimental Evidence for a Triboluminescent Antiperovskite Ferroelectric: Tris(trimethylammonium) catena-Tri-μ-chloro-Manganate(Ⅱ) Tetrachloromanganate(Ⅱ)[J]. Angew. Chem. Int. Ed., 2018,57(37):11939-11942. doi: 10.1002/anie.201805625

    32. [32]

      Liao W Q, Tang Y Y, Li P F, You Y M, Xiong R G. Competitive Halogen Bond in the Molecular Ferroelectric with Large Piezoelectric Response[J]. J. Am. Chem. Soc., 2018,140(11):3975-3980. doi: 10.1021/jacs.7b12524

    33. [33]

      Wei Z, Liao W Q, Tang Y Y, Li P F, Li P P, Cai H, Xiong R G. Discovery of an Antiperovskite Ferroelectric in[(CH3)3NH]3(MnBr3) (MnBr4)[J]. J. Am. Chem. Soc., 2018,140(26):8110-8113. doi: 10.1021/jacs.8b05037

    34. [34]

      Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G. Metal-Free Three-Dimensional Perovskite Ferroelectrics[J]. Science, 2018,361(6398):151-155. doi: 10.1126/science.aas9330

    35. [35]

      Yang C K, Chen W N, Ding Y T, Wang J, Rao Y, Liao W Q, Tang Y Y, Li P F, Wang Z X, Xiong R G. The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [R-and S-1-(4-Chlorophenyl)ethylammonium]2PbI4[J]. Adv. Mater., 2019,31(16)1808088. doi: 10.1002/adma.201808088

    36. [36]

      Fu D W, Gao J X, He W H, Huang X Q, Liu Y H, Ai Y. High-Tc Enantiomeric Ferroelectrics Based on Homochiral Dabco-Derivatives (Dabco=1, 4-Diazabicyclo[2.2.2]octane)[J]. Angew. Chem. Int. Ed., 2020,59(40):17477-17481. doi: 10.1002/anie.202007660

    37. [37]

      Rodriguez-Rodriguez A, Regueiro-Figueroa M, Esteban-Gomez D, Rodriguez-Blas T, Patinec V, Tripier R, Tircso G, Carniato F, Botta M, Platas-Iglesias C. Definition of the Labile Capping Bond Effect in Lanthanide Complexes[J]. Chem. Eur. J., 2017,23(5):1110-1117. doi: 10.1002/chem.201604390

    38. [38]

      Tickle I J, Laskowski R A, Moss D S. Error Estimates of Protein Structure Coordinates and Deviations from Standard Geometry by Full-Matrix Refinement of γB-and βB2-crystallin[J]. Acta Crystallogr. Sect. D, 1998,D54:243-252.  

    39. [39]

      Dolomanov O V, Blake A J, Champness N R, Schroder M. OLEX: New Software for Visualization and Analysis of Extended Crystal Structures[J]. J. Appl. Crystallogr., 2003,36:1283-1284. doi: 10.1107/S0021889803015267

    40. [40]

      Strokopytov B V. How to Multiply a Matrix of Normal Equations by an Arbitrary Vector Using FFT[J]. Acta Crystallogr. Sect. A, 2008,A64:601-612.

    41. [41]

      Lebuis A M, Young J M C, Beauchamp A L. Nonstoichiometric Chloride Salts of Dioxotetrakis (Imidazole) Rhenium(Ⅴ) Cations[J]. Can. J. Chem., 1993,71(12):2070-2078. doi: 10.1139/v93-257

    42. [42]

      Gassman P L, Mccloy J S, Soderquist C Z, Schweiger M J. Raman Analysis of Perrhenate and Pertechnetate in Alkali Salts and Borosilicate Glasses[J]. J. Raman Spectrosc., 2014,45(1):139-147. doi: 10.1002/jrs.4427

    43. [43]

      Hetmańczyk Ł, Hetmańczyk J. Phase Transition and NH3 Dynamics in[Ni(NH3)4](ReO4)2 Studied by Infrared Absorption, X -ray Powder Diffraction and Neutron Scattering Methods[J]. Chem. Phys., 2016,469-470:9-15. doi: 10.1016/j.chemphys.2016.02.011

    44. [44]

      Castellon C, Guenther E, Mehling H, Hiebler S, Cabeza L F. Determination of the Enthalpy of PCM as a Function of Temperature Using a Heat-Flux DSC-A Study of Different Measurement Procedures and Their Accuracy[J]. Int. J. Energy Res., 2008,32(13):1258-1265. doi: 10.1002/er.1443

    45. [45]

      Sharma D, MacDonald J C, Iannacchione G S. Thermodynamics of Activated Phase Transitions of 8CB: DSC and MC Calorimetry[J]. J. Phys. Chem. B, 2006,110:16679-16684.

    46. [46]

      Cai H L, Zhang Y, Fu D W, Zhang W, Liu T, Yoshikawa H, Awaga K, Xiong R G. Above-Room-Temperature Magnetodielectric Coupling in a Possible Molecule -Based Multiferroic: Triethylmethylammonium Tetrabromoferrate(Ⅲ)[J]. J. Am. Chem. Soc., 2012,134(45):18487-18490. doi: 10.1021/ja3073319

    47. [47]

      Li P F, Liao W Q, Tang Y Y, Qiao W, Zhao D, Ai Y, Yao Y F, Xiong R G. Organic Enantiomeric High-Tc Ferroelectrics[J]. Proc. Natl. Acad. Sci. U.S.A., 2019,116(13):5878-5885. doi: 10.1073/pnas.1817866116

    48. [48]

      Huang H, Zhang L, Wang Y, Han X D, Wu Y, Zhang Z, Gan F. Changes of Optical, Dielectric, and Structural Properties of Si 15Sb85 Phase Change Memory Thin Films under Different Initializing Laser Power[J]. J. Alloy. Compd., 2011,509(16):5050-5054. doi: 10.1016/j.jallcom.2011.02.031

    49. [49]

      Wang H T, Kong L H, Shi P P, Li Q, Ye Q, Fu D W. The Structure and Dielectric Properties of Ionic Compounds with Flexible Ammonium Moiety[J]. Chin. Chem. Lett., 2015,26(3):382-386. doi: 10.1016/j.cclet.2014.10.025

    50. [50]

      Nguyen M D. Impact of Fatigue Behavior on Energy Storage Performance in Dielectric Thin-Film Capacitors[J]. J. Eur. Ceram. Soc., 2020,40(54):1886-1895.  

  • 加载中
    1. [1]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    2. [2]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    3. [3]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    4. [4]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    5. [5]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    6. [6]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    7. [7]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    8. [8]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    9. [9]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    10. [10]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    11. [11]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    12. [12]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    13. [13]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    14. [14]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    15. [15]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    16. [16]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    17. [17]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    18. [18]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    19. [19]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    20. [20]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

Metrics
  • PDF Downloads(0)
  • Abstract views(428)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return