Citation: Xue-Feng WANG, Chong-Yu SHEN, Ji-Liang WU, Xiao-Qiu YE. First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1470-1476. doi: 10.11862/CJIC.2022.158 shu

First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study

  • Corresponding author: Xiao-Qiu YE, xiaoqiugood@sina.com
  • Received Date: 14 December 2021
    Revised Date: 23 April 2022

Figures(3)

  • An in-depth understanding of the microscopic mechanism of the reaction of hydrogen isotopes with CO2 under irradiation conditions can provide data support for the optimal design of the deuterium-tritium fuel cycle process for fusion reactors. Based on this, the microscopic reaction mechanism of H2 and CO2 under the condition of plasma discharge was studied by first-principles calculation, and the influences of different temperatures and hydrogen isotope effect on the reaction process were studied. The principal calculation was carried out by the Gaussian 09 software package. The enthalpies and activation energies of these reactions were measured at the level of M06-2X/6-311++G (3d2f, 3p2d). Four initial reaction paths are obtained by using the intrinsic reaction coordinate (IRC) algorithm and finding the transition state of the combined reaction. The thermodynamic easiness of the two pathways to produce CH4 and CH3OH and the influence of different hydrogen isotopes on each reaction were compared and studied. It is found that the spontaneous decay of tritium or the high-energy electrons in the plasma will induce hydrogen isotopes to react with CO2 to form products such as CO, H2O, CH4, and CH3OH; after the high-energy electrons induce the dissociation of CO2, there are four initial reaction paths. Complex reactions can occur on their own, and there are two tendencies to this complex reaction. Raising the reaction temperature has a certain promoting effect on the conversion of CO2 into organic matter (CH4 and CH3OH).
  • 加载中
    1. [1]

      Hassanein A, Sizyuk V. Potential Design Problems for ITER Fusion Device[J]. Sci. Rep., 2021,11(1)2069. doi: 10.1038/s41598-021-81510-2

    2. [2]

      Cristescu I R, Cristescu I, Doerr L, Glugla M, Murdoch D. Tritium Inventories and Tritium Safety Design Principles for the Fuel Cycle of ITER[J]. Nucl. Fusion, 2007,47(7):S458-S463. doi: 10.1088/0029-5515/47/7/S08

    3. [3]

      Glugla M, Lasser R, Dorr L, Murdoch D K, Haange R, Yoshida H. The Inner Deuterium/Tritium Fuel Cycle of ITER[J]. Fusion Eng. Des., 2003,69(1/2/3/4):39-43.

    4. [4]

      Glugla M, Caldwell-Nichols C, Cristescu I R, Doerr L, Hellriegel G, Laesser R, Murdoch D, Schaefer P. Protection of the Primary Circuits and Effect on the Design of the Inner Deuterium/Tritium Fuel Cycle of ITER[J]. Fusion Eng. Des., 2005,75-79:637-643. doi: 10.1016/j.fusengdes.2005.06.047

    5. [5]

      Chen Z, Hu X X, Ye M Y, Wirth B D. Deuterium Transport and Retention Properties of Representative Fusion Blanket Structural Materials[J]. J. Nucl. Mater., 2021,549152904. doi: 10.1016/j.jnucmat.2021.152904

    6. [6]

      Fridman A. Plasma Chemistry. Philadelphia: Drexel University, 2008: 5

    7. [7]

      Bogaerts A, Neyts E, Gijbels R, van der Mullen J. Gas Discharge Plasmas and Their Applications. Spectrochim[J]. Acta Pt. B—Atom. Spectr., 2002,57(4):609-658. doi: 10.1016/S0584-8547(01)00406-2

    8. [8]

      Federici G, Anderl R A, Andrew P, Brooks J N, Causey R A, Coad J P, Cowgill D, Doerner R P, Haasz A A, Janeschitz G, Jacob W, Longhurst G R, Nygren R, Peacock A, Pic M A, Philipps V, Roth J, Skinner C H, Wampler W R. In-Vessel Tritium Retention and Removal in ITER[J]. J. Nucl. Mater., 1999,266:14-29.

    9. [9]

      Song J, Xiong Y, Lang L, Shi Y, Ba J, Jing W, He M. Radiochemical Reaction of DT/T2 and CO under High Pressure[J]. J. Hazard. Mater., 2019,378120720. doi: 10.1016/j.jhazmat.2019.05.113

    10. [10]

      Douglas D L. Tritium-Carbon Monoxide Reaction[J]. J. Chem. Phys., 1955,23(8):1558-1559.

    11. [11]

      O′hira S, Nakamura H, Okuno K, Taylor D J, Sherman R H. Beta-Decay Induced Reaction Studies of Tritium by Laser Raman Spectroscopy[J]. Fusion Technol., 1995,28(3):1239-1243.

    12. [12]

      Styring P, Quadrelli E A, Armstrong K. Carbon Dioxide Utilisation: Closing the Carbon Cycle. Amsterdam: Elsevier, 2014: 9-20

    13. [13]

      Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2[J]. Chem. Rev., 2014,114(3):1709-1742. doi: 10.1021/cr4002758

    14. [14]

      Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 Conversion: A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries[J]. Energy Environ. Sci., 2013,6(6):1711-1731. doi: 10.1039/c3ee00056g

    15. [15]

      Eliasson B, Kogelschatz U, Xue B, Zhou L M. Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst[J]. Ind. Eng. Chem. Res., 1998,37(8):3350-3357. doi: 10.1021/ie9709401

    16. [16]

      Hayashi N, Yamakawa T, Baba S. Effect of Additive Gases on Synthesis of Organic Compounds from Carbon Dioxide Using Non-thermal Plasma Produced by Atmospheric Surface Discharges[J]. Vacuum, 2006,80(11/12):1299-1304.

    17. [17]

      Zeng Y, Tu X. Plasma-Catalytic CO2 Hydrogenation at Low Temperatures[J]. IEEE Trans. Plasma Sci., 2016,44(4):405-411. doi: 10.1109/TPS.2015.2504549

    18. [18]

      de Bie C, van Dijk J, Bogaerts A. CO2 Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed[J]. J. Phys. Chem. C, 2016,120(44):25210-25224. doi: 10.1021/acs.jpcc.6b07639

    19. [19]

      Maya L. Plasma-Assisted Reduction of Carbon Dioxide in the Gas Phase[J]. J. Vac. Sci. Technol. A, 2000,18(1):285-287. doi: 10.1116/1.582148

    20. [20]

      de la Fuente J F, Moreno S H, Stankiewicz A I, Stefanidis G D. A New Methodology for the Reduction of Vibrational Kinetics in Nonequilibrium Microwave Plasma: Application to CO2 Dissociation[J]. React. Chem. Eng., 2016,1(5):540-554. doi: 10.1039/C6RE00044D

    21. [21]

      Kano M, Satoh G, Iizuka S. Reforming of Carbon Dioxide to Methane and Methanol by Electric Impulse Low-Pressure Discharge with Hydrogen[J]. Plasma Chem. Plasma Process., 2012,32(2):177-185. doi: 10.1007/s11090-011-9333-0

    22. [22]

      Bogaerts A, Kozák T, van Laer K, Snoeckx R. Plasma-Based Conversion of CO2: Current Status and Future Challenges[J]. Faraday Discuss., 2015:217-232.

    23. [23]

      Corrigan S J. Dissociation of Molecular Hydrogen by Electron Impact[J]. J. Chem. Phys., 1965,43(12):4381-4386. doi: 10.1063/1.1696701

    24. [24]

      SHI C Y, REN L, KONG F A. Chemical Reaction and Energy Transfer between Hot H Atoms and CO2 Molecules[J]. Chinese J. Chem. Phys., 2006,19(6):473-477. doi: 10.3969/j.issn.1674-0068.2006.06.002

    25. [25]

      Zhao Y, Truhlar D G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function[J]. Theor. Chem. Acc., 2008,120(1/2/3):215-241.

    26. [26]

      Zhao Y, Truhlar D G. Density Functionals with Broad Applicability in Chemistry[J]. Acc. Chem. Res., 2008,41(2):157-167. doi: 10.1021/ar700111a

    27. [27]

      Frisch M J, Pople J A, Binkley J S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets[J]. J. Chem. Phys., 1984,80(7):3265-3269. doi: 10.1063/1.447079

    28. [28]

      Lu T, Chen Q X. Shermo: A General Code for Calculating Molecular Thermochemistry Properties[J]. Comput. Theor. Chem., 2021,1200113249. doi: 10.1016/j.comptc.2021.113249

    29. [29]

      Lu T. TSTcalculator. http://sobereva.com/310

    30. [30]

      DONG Y Y, WANG Y, ZHANG F Y. Inorganic and Analytical Chemistry. 3rd ed, . Beijing: Science Press 2011: 45

    31. [31]

      Fukui K. The Path of Chemical Reactions—The IRC Approach[J]. Acc. Chem. Res., 1981,14(12):363-368. doi: 10.1021/ar00072a001

    32. [32]

      Jiang Z, Xiao T, Kuznetsov V L, Edwards P P. Turning Carbon Dioxide into Fuel[J]. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2010,368(1923):3343-3364.

    33. [33]

      Rayne S. Review of the Carbon Dioxide Splitting Patent Literature[J]. Nature Precedings, 2008.

    34. [34]

      Snoeckx R, Bogaerts A. Plasma Technology—A Novel Solution for CO2 Conversion?[J]. Chem. Soc. Rev., 2017,46(19):5805-5863.

    35. [35]

      XIONG Y F, LEI Q H, LIU L, JING W Y. Researches on Irradiation Properties of Deuterium-Tritium Mixed Gases with CO2 in Room Temperature[J]. Nuclear Science and Techniques, 2018,6(3):55-60.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(8)
  • Abstract views(718)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return