First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study
- Corresponding author: Xiao-Qiu YE, xiaoqiugood@sina.com
Citation: Xue-Feng WANG, Chong-Yu SHEN, Ji-Liang WU, Xiao-Qiu YE. First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1470-1476. doi: 10.11862/CJIC.2022.158
Hassanein A, Sizyuk V. Potential Design Problems for ITER Fusion Device[J]. Sci. Rep., 2021,11(1)2069. doi: 10.1038/s41598-021-81510-2
Cristescu I R, Cristescu I, Doerr L, Glugla M, Murdoch D. Tritium Inventories and Tritium Safety Design Principles for the Fuel Cycle of ITER[J]. Nucl. Fusion, 2007,47(7):S458-S463. doi: 10.1088/0029-5515/47/7/S08
Glugla M, Lasser R, Dorr L, Murdoch D K, Haange R, Yoshida H. The Inner Deuterium/Tritium Fuel Cycle of ITER[J]. Fusion Eng. Des., 2003,69(1/2/3/4):39-43.
Glugla M, Caldwell-Nichols C, Cristescu I R, Doerr L, Hellriegel G, Laesser R, Murdoch D, Schaefer P. Protection of the Primary Circuits and Effect on the Design of the Inner Deuterium/Tritium Fuel Cycle of ITER[J]. Fusion Eng. Des., 2005,75-79:637-643. doi: 10.1016/j.fusengdes.2005.06.047
Chen Z, Hu X X, Ye M Y, Wirth B D. Deuterium Transport and Retention Properties of Representative Fusion Blanket Structural Materials[J]. J. Nucl. Mater., 2021,549152904. doi: 10.1016/j.jnucmat.2021.152904
Fridman A. Plasma Chemistry. Philadelphia: Drexel University, 2008: 5
Bogaerts A, Neyts E, Gijbels R, van der Mullen J. Gas Discharge Plasmas and Their Applications. Spectrochim[J]. Acta Pt. B—Atom. Spectr., 2002,57(4):609-658. doi: 10.1016/S0584-8547(01)00406-2
Federici G, Anderl R A, Andrew P, Brooks J N, Causey R A, Coad J P, Cowgill D, Doerner R P, Haasz A A, Janeschitz G, Jacob W, Longhurst G R, Nygren R, Peacock A, Pic M A, Philipps V, Roth J, Skinner C H, Wampler W R. In-Vessel Tritium Retention and Removal in ITER[J]. J. Nucl. Mater., 1999,266:14-29.
Song J, Xiong Y, Lang L, Shi Y, Ba J, Jing W, He M. Radiochemical Reaction of DT/T2 and CO under High Pressure[J]. J. Hazard. Mater., 2019,378120720. doi: 10.1016/j.jhazmat.2019.05.113
Douglas D L. Tritium-Carbon Monoxide Reaction[J]. J. Chem. Phys., 1955,23(8):1558-1559.
O′hira S, Nakamura H, Okuno K, Taylor D J, Sherman R H. Beta-Decay Induced Reaction Studies of Tritium by Laser Raman Spectroscopy[J]. Fusion Technol., 1995,28(3):1239-1243.
Styring P, Quadrelli E A, Armstrong K. Carbon Dioxide Utilisation: Closing the Carbon Cycle. Amsterdam: Elsevier, 2014: 9-20
Aresta M, Dibenedetto A, Angelini A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2[J]. Chem. Rev., 2014,114(3):1709-1742. doi: 10.1021/cr4002758
Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2 Conversion: A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries[J]. Energy Environ. Sci., 2013,6(6):1711-1731. doi: 10.1039/c3ee00056g
Eliasson B, Kogelschatz U, Xue B, Zhou L M. Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst[J]. Ind. Eng. Chem. Res., 1998,37(8):3350-3357. doi: 10.1021/ie9709401
Hayashi N, Yamakawa T, Baba S. Effect of Additive Gases on Synthesis of Organic Compounds from Carbon Dioxide Using Non-thermal Plasma Produced by Atmospheric Surface Discharges[J]. Vacuum, 2006,80(11/12):1299-1304.
Zeng Y, Tu X. Plasma-Catalytic CO2 Hydrogenation at Low Temperatures[J]. IEEE Trans. Plasma Sci., 2016,44(4):405-411. doi: 10.1109/TPS.2015.2504549
de Bie C, van Dijk J, Bogaerts A. CO2 Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed[J]. J. Phys. Chem. C, 2016,120(44):25210-25224. doi: 10.1021/acs.jpcc.6b07639
Maya L. Plasma-Assisted Reduction of Carbon Dioxide in the Gas Phase[J]. J. Vac. Sci. Technol. A, 2000,18(1):285-287. doi: 10.1116/1.582148
de la Fuente J F, Moreno S H, Stankiewicz A I, Stefanidis G D. A New Methodology for the Reduction of Vibrational Kinetics in Nonequilibrium Microwave Plasma: Application to CO2 Dissociation[J]. React. Chem. Eng., 2016,1(5):540-554. doi: 10.1039/C6RE00044D
Kano M, Satoh G, Iizuka S. Reforming of Carbon Dioxide to Methane and Methanol by Electric Impulse Low-Pressure Discharge with Hydrogen[J]. Plasma Chem. Plasma Process., 2012,32(2):177-185. doi: 10.1007/s11090-011-9333-0
Bogaerts A, Kozák T, van Laer K, Snoeckx R. Plasma-Based Conversion of CO2: Current Status and Future Challenges[J]. Faraday Discuss., 2015:217-232.
Corrigan S J. Dissociation of Molecular Hydrogen by Electron Impact[J]. J. Chem. Phys., 1965,43(12):4381-4386. doi: 10.1063/1.1696701
SHI C Y, REN L, KONG F A. Chemical Reaction and Energy Transfer between Hot H Atoms and CO2 Molecules[J]. Chinese J. Chem. Phys., 2006,19(6):473-477. doi: 10.3969/j.issn.1674-0068.2006.06.002
Zhao Y, Truhlar D G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function[J]. Theor. Chem. Acc., 2008,120(1/2/3):215-241.
Zhao Y, Truhlar D G. Density Functionals with Broad Applicability in Chemistry[J]. Acc. Chem. Res., 2008,41(2):157-167. doi: 10.1021/ar700111a
Frisch M J, Pople J A, Binkley J S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets[J]. J. Chem. Phys., 1984,80(7):3265-3269. doi: 10.1063/1.447079
Lu T, Chen Q X. Shermo: A General Code for Calculating Molecular Thermochemistry Properties[J]. Comput. Theor. Chem., 2021,1200113249. doi: 10.1016/j.comptc.2021.113249
Lu T. TSTcalculator. http://sobereva.com/310
DONG Y Y, WANG Y, ZHANG F Y. Inorganic and Analytical Chemistry. 3rd ed, . Beijing: Science Press 2011: 45
Fukui K. The Path of Chemical Reactions—The IRC Approach[J]. Acc. Chem. Res., 1981,14(12):363-368. doi: 10.1021/ar00072a001
Jiang Z, Xiao T, Kuznetsov V L, Edwards P P. Turning Carbon Dioxide into Fuel[J]. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2010,368(1923):3343-3364.
Rayne S. Review of the Carbon Dioxide Splitting Patent Literature[J]. Nature Precedings, 2008.
Snoeckx R, Bogaerts A. Plasma Technology—A Novel Solution for CO2 Conversion?[J]. Chem. Soc. Rev., 2017,46(19):5805-5863.
XIONG Y F, LEI Q H, LIU L, JING W Y. Researches on Irradiation Properties of Deuterium-Tritium Mixed Gases with CO2 in Room Temperature[J]. Nuclear Science and Techniques, 2018,6(3):55-60.
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Yaqian Duan , Juan Su , Meiyu Lin , Yuxin Fang , Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063