Citation: Hao-Tian DENG, Chuan-Wei WANG, Shou-Xiao CHEN, Si-Yu PAN, Chao LÜ, Ming-Jia GUO, Jun-Ke LIU, Guo-Zhen WEI, Yao ZHOU, Jun-Tao LI. Boosting the Electrochemical Performance of High-Voltage LiCoO2 Cathode by a Dual-Coating Strategy[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1557-1566. doi: 10.11862/CJIC.2022.156 shu

Boosting the Electrochemical Performance of High-Voltage LiCoO2 Cathode by a Dual-Coating Strategy

  • Corresponding author: Jun-Tao LI, jtli@xmu.edu.cn
  • Received Date: 31 March 2022
    Revised Date: 10 June 2022

Figures(6)

  • In this study, by using the solid and liquid coating method, LiCoO2 was dual-coated by lithium titanate (Li4Ti5O12) and polypyrrole (PPy). The coating layers not only protect the surface of LiCoO2 at high voltage but also increase its ion conductivity and electronic conductivity. According to the result of the electrochemistry test, when the mass ratio of active material, conductive agent, and binder was 80∶10∶10, the capacity retention of the modified material after 300 cycles at 0.5C (1C=180 mA·g-1) was 76.9%. Its reversible capacity was 150 mAh·g-1 at 5C cur- rent density. Due to the improvement of electric conductive of dual-coated LiCoO2, when this mass ratio was 90∶3∶ 7, the capacity retention after 200 cycles at 0.5C was 82.8%. Its reversible capacity was 130 mAh·g-1 at 5C current density. As shown in X-ray photoelectron spectra, the coating layers can keep stability during cycling and prevent side reactions on the surface.
  • 加载中
    1. [1]

      Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chem. Mater., 2010,22(3):587-603. doi: 10.1021/cm901452z

    2. [2]

      Oh S, Lee J K, Byun D G, Cho W L, Cho B W. Effect of Al2O3 Coating on Electrochemical Performance of LiCoO2 as Cathode Materials for Secondary Lithium Batteries[J]. J. Power Sources, 2004,132(1):249-255.

    3. [3]

      Kai W, Wan J J, Xiang Y X, Zhu J P, Leng Q Y, Xu L M, Yang Y. Recent Advances and Historical Developments of High Voltage Lithium Cobalt Oxide Materials for Rechargeable Li-Ion Batteries[J]. J. Power Sources, 2020,460(6)228062.

    4. [4]

      Zhou A, Liu Q, Wang Y, Wang W H, Yao X, Hu W T, Zhang L, Yu X Q. Al2O3 Surface Coating on LiCoO2 through a Facile and Scalable Wet-Chemical Method towards High-Energy Cathode Materials with Standing High Cutoff Voltages[J]. J. Mater. Chem. A, 2017,5(46)2436124370.

    5. [5]

      Wang X, Wang X Y, Lu Y Y. Realizing High Voltage Lithium Cobalt Oxide in Lithium-Ion Batteries[J]. Ind. Eng. Chem. Res., 2019,58(24):10119-10139. doi: 10.1021/acs.iecr.9b01236

    6. [6]

      Li J Y, Lin C, Qiu Y, Chen P H, Yang K, Huang W Y, Hong Y X, Li J, Zhang M J, Dong C, Zhao W G, Xu Z, Wang X, Xu K, Sun J L, Pan F. Structural Origin of the High-Voltage Instability of Lithium Cobalt Oxide[J]. Nat. Nanotechnol., 2021,16(2):599-605.

    7. [7]

      Huang Y Y, Zhu Y C, Fu H Y, Yu S J, Hu Z W, Chen C T, Jiang G, Gu H K, Lin H, Luo W, Huang Y H. Mg-Pillared LiCoO2: Towards Stable Cycling at 4.6 V[J]. Angew. Chem. Int. Ed., 2021,60(11):4682-4688.

    8. [8]

      Zhang J N, Li Q H, Ouyang C Y, Yu X Q, Ge M Y, Huang X J, Hu E Y, Ma C, Li S F, Xiao R J, Yang W L, Chu Y, Liu Y J, Yu H G, Yang X Q, Huang X J, Chen L Q, Li H. Trace Doping of Multiple Elements Enables Stable Battery Cycling of LiCoO2 at 4.6 V[J]. Nat. Energy, 2019,4(7):594-603. doi: 10.1038/s41560-019-0409-z

    9. [9]

      Radin M D, Hy S, Sina M, Fang C C, Liu H D, Vinckeviciute J, Zhang M H, Whittingham M S, Meng S Y, Van A V D. Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials[J]. Adv. Energy Mater., 2017,7(3)1602888.

    10. [10]

      Hwang B J, Chen C Y, Cheng M Y, Santhanam R, Ragavendran K. Mechanism Study of Enhanced Electrochemical Performance of ZrO2-Coated LiCoO2 in High Voltage Region[J]. J. Power Sources, 2010,195(13):4255-4265. doi: 10.1016/j.jpowsour.2010.01.040

    11. [11]

      Dai X Y, Zhou A J, Xu J, Yang B, Wang L P, Li J Z. Superior Electrochemical Performance of LiCoO2 Electrodes Enabled by Conductive Al2O3-Doped ZnO Coating via Magnetron Sputtering[J]. J. Power Sources, 2015,298(12):114-122.

    12. [12]

      Yu Y, Shui J L, Jin Y, Chen C H. Electrochemical Performance of Nano-SiO2 Modified LiCoO2 Thin Films Fabricated by Electrostatic Spray Deposition (ESD)[J]. Electrochim. Acta, 2005,51(16):3292-3296.

    13. [13]

      Wang C W, Zhou Y, You J H, Chen J D, Zhang Z, Zhang S J, Shi C G, Zhang W D, Zou M H, Yu Y, Li J T, Zeng L Y, Huang L, Sun S G. High-Voltage LiCoO2 Material Encapsulated in a Li4Ti5O12 Ultrathin Layer by High-Speed Solid-Phase Coating Process[J]. ACS Appl. Energy Mater., 2020,3(3):2593-2603. doi: 10.1021/acsaem.9b02291

    14. [14]

      Cheng T, Cheng Q, He Y, Ge M H, Feng Z J, Li P P, Huang Y J, Zheng J Y, Lyu Y C, Guo B K. A Hybrid Ionic and Electronic Conductive Coating Layer for Enhanced Electrochemical Performance of 4.6 V LiCoO2[J]. ACS Appl. Mater. Interfaces, 2021,13(36):42917-42926. doi: 10.1021/acsami.1c12882

    15. [15]

      Yan P F, Zheng J M, Liu J, Wang B Q, Cheng X P, Zhang Y F, Sun X L, Wang C M, Zhang J G. Tailoring Grain Boundary Structures and Chemistry of Ni-Rich Layered Cathodes for Enhanced Cycle Stability of Lithium-Ion Batteries[J]. Nat. Energy, 2018,3(6):600-605.

    16. [16]

      Deng S X, Li X, Ren Z H, Li W H, Luo J, Liang J W, Sun X L. Dualfunctional Interfaces for Highly Stable Ni-Rich Layered Cathodes in Sulfide All-Solid-State Batteries[J]. Energy Storage Mater., 2020,27(3):117-123.

    17. [17]

      Chen S, He T, Su Y F, Lu Y, Bao L Y, Chen L, Zhang Q Y, Wang J, Chen R J, Wu F. Ni-Rich LiNi0.8Co0.1Mn0.1O2 Oxide Coated by Dual- conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2017,9(35)2973229743.

    18. [18]

      Xiong X H, Ding D, Wang Z X, Huang B, Guo H J, Li X H. Surface Modification of LiNi0.8Co0.1Mn0.1O2 with Conducting Polypyrrole[J]. J. Solid State Electrochem., 2014,18(9):2619-2624. doi: 10.1007/s10008-014-2519-7

    19. [19]

      Cao J C, Hu G R, Peng Z D, Du K, Cao Y B. Polypyrrole- Coated LiCoO2 Nanocomposite with Enhanced Electrochemical Properties at High Voltage for Lithium-Ion Batteries[J]. J. Power Sources, 2015,281(3):49-55.

    20. [20]

      Wang Y, Zhang Q H, Xue Z C, Yang L F, Wang J Y, Meng F Q, Li Q H, Pan H Y, Zhang J N, Jiang Z, Yang W L, Yu X Q, Gu L, Li H. An In Situ Formed Surface Coating Layer Enabling LiCoO2 with Stable 4.6 V High-Voltage Cycle Performances[J]. Adv. Energy Mater., 2020,10(28)2001413. doi: 10.1002/aenm.202001413

    21. [21]

      Yang Z X, Li R G, Deng Z H. A Deep Study of the Protection of Lithium Cobalt Oxide with Polymer Surface Modification at 4.5 V High Voltage[J]. Sci. Rep., 2018,8(1)863. doi: 10.1038/s41598-018-19176-6

    22. [22]

      Guang J, Li Y G, Guo Y G, Su R J, Gao G L, Song H X, Yuan H, Liang B, Guo Z H. Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2017,5(1):1026-1032. doi: 10.1021/acssuschemeng.6b02337

    23. [23]

      Nordh T, Younesi R, Brandell D, Edström K. Depth Profiling the Solid Electrolyte Interphase on Lithium Titanate (Li4Ti5O12) Using Synchrotron-Based Photoelectron Spectroscopy[J]. J. Power Sources, 2015,294(11):173-179.

    24. [24]

      Tian T, Zhang T W, Yin Y C, Tan Y H, Song Y H, Lu L L, Yao H B. Blow-Spinning Enabled Precise Doping and Coating for Improving High-Voltage Lithium Cobalt Oxide Cathode Performance[J]. Nano Lett., 2020,20(1):677-685. doi: 10.1021/acs.nanolett.9b04486

    25. [25]

      Setka M, Calavia R, Vojkůvka L, Llobet E, Drbohlavová J, Vallejos S. Raman and XPS Studies of Ammonia Sensitive Polypyrrole Nanorods and Nanoparticles[J]. Sci. Rep., 2019,9(1)8456. doi: 10.1038/s41598-019-44620-6

    26. [26]

      Singh A, Salami Z, Joshi N, Jha P, Kumar A, Lecoq H. Photo Induced Synthesis of Polypyrrole-Silver Nanocomposite Films on N(3-Trimethoxysilylpropyl)pyrrole-Modified Biaxially Oriented Polyethylene Terephthalate Flexible Substrates[J]. RSC Adv., 2013,3(16):5506-5523. doi: 10.1039/c3ra22981e

    27. [27]

      Feng M Z, Liu W, Zhou Y, Zhen R R, He H M, Wang Y, Li C M. Synthesis of Polypyrrole/Nitrogen-Doped Porous Carbon Matrix Composite as the Electrode Material for Supercapacitors[J]. Sci. Rep., 2020,10(1)15370. doi: 10.1038/s41598-020-72392-x

    28. [28]

      Wang C W, Ren F C, Zhou Y, Yan P F, Zhou X D, Zhang S J, Liu W, Zhang W D, Zou M H, Zeng LY, Yao X Y, Huang L, Li J T, Sun S G. Engineering the Interface between LiCoO2 and Li10GeP2S12 Solid Electrolytes with an Ultrathin Li2CoTi3O8 Interlayer to Boost the Performance of All- Solid- State Batteries[J]. Energy Environ. Sci., 2020,14(1):437-450.

    29. [29]

      Chen S X, Wang C W, Zhou Y, Liu J K, Shi C G, Wei G Z, Yin B Y, Deng H T, Pan S Y, Guo M J, Zheng W C, Wang H Z, Jiang Y H, Huang L, Liao H G, Li J T, Sun S G. Co/Li-Dual-Site Doping towards LiCoO2 as a High-Voltage, Fast-Charging, and Long-Cycling Cathode Material[J]. J. Mater. Chem. A, 2022,10(2):5295-5304.

    30. [30]

      Hall D S, Gauthier R, Eldesoky A, Murray V S, Dahn J R. New Chemical Insights into the Beneficial Role of Al2O3 Cathode Coatings in Lithium-Ion Cells[J]. ACS Appl. Mater. Interfaces, 2019,11(15):14095-14100. doi: 10.1021/acsami.8b22743

    31. [31]

      Zhang C K, Chen Q, Ai X, Li X G, Xie Q S, Cheng Q, Kong H F, Xu W J, Wang L S, Wang M S, Yang H, Peng D L. Conductive Polyaniline Doped with Phytic Acid as a Binder and Conductive Additive for a Commercial Silicon Anode with Enhanced Lithium Storage Properties[J]. J. Mater. Chem. A, 2020,8(32):16323-16331. doi: 10.1039/D0TA04389C

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(5)
  • Abstract views(614)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return