Citation: Rui YANG, Shu-Ya ZHANG, Run-Guo WANG, Yin-Shan MENG, Tao LIU, Yuan-Yuan ZHU. Synthesis and Magnetic Properties of Mononuclear Cobalt(Ⅱ) Spin Crossover Complexes from Complementary Terpyridine Ligand Pairing[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1477-1486. doi: 10.11862/CJIC.2022.155 shu

Synthesis and Magnetic Properties of Mononuclear Cobalt(Ⅱ) Spin Crossover Complexes from Complementary Terpyridine Ligand Pairing

Figures(5)

  • The cobalt(Ⅱ) complexes containing terpyridine (terpy) and its derivatives compose a large family of Co(Ⅱ) SCO-active (SCO=spin-crossover) compounds and the reported cases are mainly built from homoleptic type terpy ligands. Herein we report the SCO properties in three mononuclear cobalt (Ⅱ) complexes constructed from complementary terpy ligand pairing. Their SCO behaviors are largely affected by the substituents of terpy at the 4-position. The archetypical complex 1 and its CF3-substituted one 3 showed a gradual and incomplete spin transition from the low spin state of S=1/2 to the high spin state of S=3/2. The fluorine-substituted complex 2 exhibited a solventdependent spin transition phenomenon. The solvated form which contains three lattice water molecules showed a similar gradually incomplete spin transition. Whereas the entire removal of water molecules resulted in a repeatable thermal hysteresis loop with a width of ca. 50 K. Impressively, the adsorption and desorption of water molecules are reversible in structure and magnetism. In addition, absorption spectroscopy and cyclic voltammetry show that the substituent on the ligands can regulate the electronic structures of the central cobalt ion.
  • 加载中
    1. [1]

      Gütlich P, Goodwin H A. Spin Crossover—An Overall Perspective//Gütlich P, Goodwin H A. Spin Crossover in Transition Metal Compounds Ⅰ. Berlin: Springer Berlin, Heidelberg, 2004: 1-47

    2. [2]

      Halcrow M A. Spin-Crossover Materials: Properties and Applications. Chichester: John Wiley & Sons, 2013.

    3. [3]

      Nakaya M, Ohtani R, Hayami S. Guest Modulated Spin States of Metal Complex Assemblies[J]. Eur. J. Inorg. Chem., 2020(39):3709-3719.

    4. [4]

      Olguin J. Unusual Metal Centres/Coordination Spheres in Spin Crossover Compounds[J]. Coord. Chem. Rev., 2020,407213148. doi: 10.1016/j.ccr.2019.213148

    5. [5]

      Brooker S. Spin Crossover with Thermal Hysteresis: Practicalities and Lessons Learnt[J]. Chem. Soc. Rev., 2015,44(10):2880-2892. doi: 10.1039/C4CS00376D

    6. [6]

      Halcrow M A. Structure: Function Relationships in Molecular Spin-Crossover Complexes[J]. Chem. Soc. Rev., 2011,40(7):4119-4142. doi: 10.1039/c1cs15046d

    7. [7]

      Sciortino N F, Scherl-Gruenwald K R, Chastanet G, Halder G J, Chapman K W, Letard J F, Kepert C J. Hysteretic Three-Step Spin Crossover in a Thermo-and Photochromic 3D Pillared Hofmann-Type Metal-Organic Framework[J]. Angew. Chem. Int. Ed., 2012,51(40):10154-10158. doi: 10.1002/anie.201204387

    8. [8]

      Cambi L, Szegö L. Über die Magnetische Susceptibilität der Komplexen Verbindungen. Ber. Dtsch. Chem. Ges. B, 1931, 64(10): 2591-2598
      Cambi L, Szegö L. The Magnetic Susceptibility of Complex Compounds. Ber. Dtsch. Chem. Ges. B, 1931, 64(10): 2591-2598

    9. [9]

      Mathoniere C. Metal-To-Metal Electron Transfer: A Powerful Tool for the Design of Switchable Coordination Compounds[J]. Eur. J. Inorg. Chem., 2018(3/4):248-258.

    10. [10]

      WANG Y Q, ZHANG H X, ZHANG S H, HE W, GE F Y, CHEN Y X, GU Z G. Synthesis and Gelation Ability of Spin-Crossover Iron(Ⅱ) Alkyl Imidazole Complexes[J]. Chinese J. Inorg. Chem., 2019,35(12):2260-2268. doi: 10.11862/CJIC.2019.254

    11. [11]

      Gütlich P, Gaspar A B, Garcia Y. Spin State Switching in Iron Coordination Compounds[J]. Beilstein J. Org. Chem., 2013,9:342-391. doi: 10.3762/bjoc.9.39

    12. [12]

      WANG K J, LI H Q, SUN Y C, WANG X Y. Synthesis and Properties of an Iron(Ⅲ) Spin Crossover Compound with 1D Chains Bridged by Hydrogen Bonds[J]. Chinese J. Inorg. Chem., 2020,36(6):1143-1148.  

    13. [13]

      Liu T, Liu Q, Hu J X, Meng Y S, Jiang W J, Wang J L, Wen W, Wu Q, Zhu H L, Zhao L. Asymmetric Coordination toward a Photoinduced Single-Chain Magnet Showing Large Coercivity[J]. Angew. Chem. Int. Ed., 2021,60(19):10537-10541. doi: 10.1002/anie.202017249

    14. [14]

      Guo Y, Yang X L, Wei R J, Zheng L S, Tao J. Spin Transition and Structural Transformation in a Mononuclear Cobalt (Ⅱ) Complex[J]. Inorg. Chem., 2015,54(16):7670-7672. doi: 10.1021/acs.inorgchem.5b01344

    15. [15]

      Xue S F, Guo Y N, Garcia Y. Spin Crossover Crystalline Materials Engineered via Single-Crystal-To-Single-Crystal Transformations[J]. CrystEngComm, 2021,23(45):7899-7915. doi: 10.1039/D1CE00234A

    16. [16]

      Krivokapic I, Zerara M, Daku M L, Vargas A, Enachescu C, Ambrus C, Tregenna-Piggott P, Amstutz N, Krausz E, Hauser A. Spin-Crossover in Cobalt(Ⅱ) Imine Complexes[J]. Coord. Chem. Rev., 2007,251(3/4):364-378.

    17. [17]

      Hayami S, Komatsu Y, Shimizu T, Kamihata H, Lee Y N. Spin-Crossover in Cobalt (Ⅱ) Compounds Containing Terpyridine and Its Derivatives[J]. Coord. Chem. Rev., 2011,255(17/18):1981-1990.

    18. [18]

      Bersuke I B. Spin Crossover and Magnetic-Dielectric Bistability Induced by Hidden Pseudo-Jahn-Teller Effect[J]. Magnetochemistry, 2020,6(4)64. doi: 10.3390/magnetochemistry6040064

    19. [19]

      Kilner C A, Halcrow M A. An Unusual Discontinuity in the Thermal Spin Transition in Co(terpy)2[BF4]2[J]. Dalton Trans., 2010,39(38):9008-9012. doi: 10.1039/c0dt00295j

    20. [20]

      Kou H Z, Sato O. New Oxalate-Bridged Cr-Mn Polymeric Network Incorporating a Spin-Crossover[Co(terpy)2]2+ Cation[J]. Inorg. Chem., 2007,46(23):9513-9515. doi: 10.1021/ic701043f

    21. [21]

      Zhang X, Wang Z X, Xie H, Li M X, Woods T J, Dunbar K R. A Cobalt (Ⅱ) Spin-Crossover Compound with Partially Charged TCNQ Radicals and an Anomalous Conducting Behavior[J]. Chem. Sci., 2016,7(2):1569-1574. doi: 10.1039/C5SC03547C

    22. [22]

      Shao D, Shi L, Shen F X, Wei X Q, Sato O, Wang X Y. Reversible On-Off Switching of the Hysteretic Spin Crossover in a Cobalt (Ⅱ) Complex via Crystal to Crystal Transformation[J]. Inorg. Chem., 2019,58(17):11589-11598. doi: 10.1021/acs.inorgchem.9b01436

    23. [23]

      Zenno H, Kobayashi F, Nakamura M, Sekine Y, Lindoy L F, Hayami S. Hydrogen Bond-Induced Abrupt Spin Crossover Behaviour in 1-D Cobalt (Ⅱ) Complexes—The Key Role of Solvate Water Molecules[J]. Dalton Trans., 2021,50(22):7843-7853. doi: 10.1039/D1DT01069G

    24. [24]

      Sinha P, Kumari N, Singh K, Singh K, Mishra L. Homoleptic Bisterpyridyl Complexes: Synthesis, Characterization, DNA Binding, DNA Cleavage and Topoisomerase Ⅱ Inhibition Activity[J]. Inorg. Chim. Acta, 2015,432:71-80. doi: 10.1016/j.ica.2015.03.026

    25. [25]

      Pankratova Y, Aleshin D, Nikovskiy I, Novikov V, Nelyubina Y. In Situ NMR Search for Spin-Crossover in Heteroleptic Cobalt(Ⅱ) Complexes[J]. Inorg. Chem., 2020,59(11):7700-7709. doi: 10.1021/acs.inorgchem.0c00716

    26. [26]

      Wang S Y, Fu J H, Liang Y P, He Y J, Chen Y S, Chan Y T. Metallo-Supramolecular Self-Assembly of a Multicomponent Ditrigon Based on Complementary Terpyridine Ligand Pairing[J]. J. Am. Chem. Soc., 2016,138(11):3651-3654. doi: 10.1021/jacs.6b01005

    27. [27]

      Wang S Y, Huang J Y, Liang Y P, He Y J, Chen Y S, Zhan Y Y, Hiraoka S, Liu Y H, Peng S M, Chan Y T. Multicomponent Self-Assembly of Metallo-Supramolecular Macrocycles and Cages through Dynamic Heteroleptic Terpyridine Complexation[J]. Chem. Eur. J., 2018,24(37):9274-9284. doi: 10.1002/chem.201801753

    28. [28]

      Fu J H, Wang S Y, Chen Y S, Prusty S, Chan Y T. One-Pot Self-Assembly of Stellated Metallosupramolecules from Multivalent and Complementary Terpyridine-Based Ligands[J]. J. Am. Chem. Soc., 2019,141(41):16217-16221. doi: 10.1021/jacs.9b08731

    29. [29]

      Mcpherson J N, Hogue R W, Akogun F S, Bondi L, Luis E T, Price J R, Garden A L, Brooker S, Colbran S B. Predictable Substituent Control of CoⅢ/Ⅱ Redox Potential and Spin Crossover in Bis(dipyridylpyrrolide)cobalt Complexes[J]. Inorg. Chem., 2019,58(3):2218-2228. doi: 10.1021/acs.inorgchem.8b03457

    30. [30]

      Kobayashi F, Iwaya K, Zenno H, Nakamura M, Li F, Hayami S. Spin State Modulation in Cobalt (Ⅱ) Terpyridine Complexes by Cocrystallization with 1, 3, 5-Triiodo-2, 4, 6-trifluorobenzene[J]. Bull. Chem. Soc. Jpn., 2021,94(1):158-163. doi: 10.1246/bcsj.20200246

    31. [31]

      Karabulut F N H, Feltham H L C, Brooker S. Substituents Drive Ligand Rearrangements, Giving Dinuclear Rather than Mononuclear Complexes, and Tune CoⅡ/Ⅲ Redox Potential[J]. Dalton Trans., 2018,47(34):11749-11759. doi: 10.1039/C8DT01502C

    32. [32]

      Sil A, Ghosh U, Mishra V K, Mishra S, Patra S K. Synthesis, Structure, Electrochemical, and Spectroscopic Properties of Hetero-Bimetallic Ru(Ⅱ)/Fe(Ⅱ)-Alkynyl Organometallic Complexes[J]. Inorg. Chem., 2019,58(2):1155-1166. doi: 10.1021/acs.inorgchem.8b02440

    33. [33]

      Dickenson J C, Haley M E, Hyde J T, Reid Z M, Tarring T J, Iovan D A, Harrison D P. Fine-Tuning Metal and Ligand-Centered Redox Potentials of Homoleptic Bis-terpyridine Complexes with 4′-Aryl Substituents[J]. Inorg. Chem., 2021,60(13):9956-9969. doi: 10.1021/acs.inorgchem.1c01233

    34. [34]

      Holland J M, Mcallister J A, Lu Z B, Kilner C A, Thornton-Pett M, Halcrow M A. An Unusual Abrupt Thermal Spin-State Transition in [FeL2][BF4]2[L=2, 6-Di(pyrazol-1-yl)pyridine][J]. Chem. Commun., 2001(6):577-578. doi: 10.1039/b100995h

    35. [35]

      Mccusker J K, Rheingold A L, Hendrickson D N. Variable-Temperature Studies of Laser-Initiated 5T21A1 Intersystem Crossing in Spin-Crossover Complexes: Empirical Correlations between Activation Parameters and Ligand Structure in a Series of Polypyridyl Ferrous Complexes[J]. Inorg. Chem., 1996,35(7):2100-2112. doi: 10.1021/ic9507880

    36. [36]

      Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D. Shape Maps and Polyhedral Interconversion Paths in Transition Metal Chemistry[J]. Coord. Chem. Rev., 2005,249(17):1693-1708.

    37. [37]

      Ni Z P, Liu J L, Hogue N, Liu W, Li J Y, Chen Y C, Tong M L. Recent Advances in Guest Effects on Spin-Crossover Behavior in Hofmann-Type Metal-Organic Frameworks[J]. Coord. Chem. Rev., 2017,335:28-43. doi: 10.1016/j.ccr.2016.12.002

    38. [38]

      Kobayashi F, Komatsumaru Y, Akiyoshi R, Nakamura M, Zhang Y, Lindoy L F, Hayami S. Water Molecule-Induced Reversible Magnetic Switching in a Bis-terpyridine Cobalt(Ⅱ) Complex Exhibiting Coexistence of Spin Crossover and Orbital Transition Behaviors[J]. Inorg. Chem., 2020,59(23):16843-16852. doi: 10.1021/acs.inorgchem.0c00818

    39. [39]

      Tang J H, Sun T G, Shao J Y, Gong Z L, Zhong Y W. Resistive Memory Devices Based on a Triphenylamine-Decorated Non-precious Cobalt (Ⅱ) Bis-terpyridine Complex[J]. Chem. Commun., 2017,53(87):11925-11928. doi: 10.1039/C7CC05806C

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    8. [8]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    11. [11]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    12. [12]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    13. [13]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    14. [14]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    15. [15]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    16. [16]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    17. [17]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    18. [18]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    19. [19]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    20. [20]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

Metrics
  • PDF Downloads(3)
  • Abstract views(382)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return