Citation: Song QIU, Wen-Ning YAN, Li WANG, Lian-Shan ZHANG, Chao CHEN, Li-Juan MU, Shi-Gang MU. Facile Synthesis of Si@LiAlO2 Nanocomposites as Anode for Lithium-Ion Battery[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1655-1662. doi: 10.11862/CJIC.2022.154 shu

Facile Synthesis of Si@LiAlO2 Nanocomposites as Anode for Lithium-Ion Battery

  • Corresponding author: Song QIU, qiusong0307@163.com
  • Received Date: 20 March 2022
    Revised Date: 28 May 2022

Figures(6)

  • The nanocomposites of LiAlO2 coated Si nanoparticles (Si@LiAlO2) have been successfully synthesized by the solvothermal method and heat treatment. Si@LiAlO2 formed a dendritic structure with openings and channels between the dendrites. As anode material for lithiumion batteries, electrochemical results showed that as-prepared Si@LiAlO2 nanocomposite achieved a reversible capacity of 364.1 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1. The superior cycling performance is attributed to the nanocomposite dendritic structure, in which nanosized Si particles shorten the diffusion path of lithium ions and the LiAlO2 coating, the voids, and openings between the dendrites help buffer volume changes during charging and discharging.
  • 加载中
    1. [1]

      Yang Y H, Liu S, Bian X F, Feng J K, An Y L, Yuan C. Morphology- and Porosity-Tunable Synthesis of 3D-Nanoporous SiGe Alloy as High-Performance Lithium-Ion Battery Anode[J]. ACS Nano, 2018,12(3):2900-2908. doi: 10.1021/acsnano.8b00426

    2. [2]

      Zhang S J, Qin Z L, Hou Z G, Ye J J, Xu Z B, Qian Y T. Large-Scale Preparation of Black Phosphorus by Molten Salt Method for Energy Storage[J]. ChemPhysMater, 2022,1(1):1-5. doi: 10.1016/j.chphma.2021.09.005

    3. [3]

      Yi T F, Shi L N, Han X, Wang F F, Zhu Y R, Xie Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierar-chical CoNiO2@CeO2 Nanosheets[J]. Energy Environ. Mater., 2021,4(4):586-595. doi: 10.1002/eem2.12140

    4. [4]

      Yi T F, Mei J, Peng P P, Luo S H. Facile Synthesis of Polypyrrole-Modified Li5Cr7Ti6O25 with Improved Rate Performance as Negative Electrode Material for Li-Ion Batteries[J]. Composites Part B, 2019,167:566-572. doi: 10.1016/j.compositesb.2019.03.032

    5. [5]

      Yi T F, Xie Y, Zhu Y R, Zhu R S, Shen H Y. Structural and Thermo-dynamic Stability of Li4Ti5O12 Anode Material for Lithium-Ion Bat-tery[J]. J. Power Sources, 2013,222:448-454. doi: 10.1016/j.jpowsour.2012.09.020

    6. [6]

      Fu L L, Xu A D, Song Y, Ju J H, Sun H, Yan Y R, Wu S P. Pinecone-like Silicon@Carbon Microspheres Covered by Al2O3 Nano-petals for Lithium-Ion Battery Anode under High Temperature[J]. Electrochim. Acta, 2021,387138461. doi: 10.1016/j.electacta.2021.138461

    7. [7]

      Song C S, Zhao B X, Chen S Y, Ma J Y, Du H B. Nickel-Assisted One-Pot Preparation of Graphenic Carbon Matrices Embedded with Silicon Nanoparticles as Anode Materials for Lithium Ion Batteries[J]. Carbon, 2021,179:266-274. doi: 10.1016/j.carbon.2021.04.042

    8. [8]

      Zhang X, Ju Z Y, Zhu Y, Takeuchi K J, Takeuchi E S, Marschilok A C, Yu G H. Multiscale Understanding and Architecture Design of High Energy/Power Lithium-Ion Battery Electrodes[J]. Adv. Energy Mater., 2020,11(2)2000808.

    9. [9]

      Wang J Y, Liao L, Lee H R, Shi F F, Huang W, Zhao J, Pei A, Tang J, Zheng X L, Chen W, Cui Y. Surface-Engineered Mesoporous Silicon Microparticles as High-Coulombic-Efficiency Anodes for Lithium-Ion Batteries[J]. Nano Energy, 2019,61:404-410. doi: 10.1016/j.nanoen.2019.04.070

    10. [10]

      Peng P P, Wu Y R, Li X Z, Zhang J H, Li Y W, Cui P, Yi T F. Toward Superior Lithium/Sodium Storage Performance: Design and Construction of Novel TiO2-Based Anode Materials[J]. Rare Met., 2021,40:3049-3075. doi: 10.1007/s12598-021-01742-z

    11. [11]

      Yi T F, Pan J J, Wei T T, Li Y W, Cao G Z. NiCo2S4-Based Nanocom-posites for Energy Storage in Supercapacitors and Batteries[J]. Nano Today, 2020,33100894. doi: 10.1016/j.nantod.2020.100894

    12. [12]

      Lee D H, Shim H W, Kim D W. Facile Synthesis of Heterogeneous Ni-Si@C Nanocomposites as High Performance Anodes for Li-Ion Batteries[J]. Electrochim. Acta, 2014,146:60-67. doi: 10.1016/j.electacta.2014.08.103

    13. [13]

      Zhang C J, Gu L, Kaskhedikar N, Cui G L, Maier J. Preparation of Silicon@Silicon Oxide Core-Shell Nanowires from a Silica Precursor toward a High Energy Density Li-Ion Battery Anode[J]. ACS Appl. Mater. Interfaces, 2013,5(23):12340-12345. doi: 10.1021/am402930b

    14. [14]

      Kim W S, Hwa Y, Shin J H, Yang M, Sohn H J, Hong S H. Scalable Synthesis of Silicon Nanosheets from Sand as an Anode for Li-Ion Batteries[J]. Nanoscale, 2014,6(8):4297-4302. doi: 10.1039/c3nr05354g

    15. [15]

      An W L, He P, Xiao C M, Guo E M, Pang C L, He X Q, Ren J G, Yuan G H, Du N, Yang D R. Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries[J]. ACS Appl. Energy Mater., 2021,4(5):4976-4985. doi: 10.1021/acsaem.1c00529

    16. [16]

      Shi J, Jiang X S, Sun J F, Ban B Y, Li J W, Chen J. Recycled Silicon-Based Anodes with Three-Dimensional Hierarchical Porous Carbon Framework Synthesized by a Self-Assembly CaCO3 Template Meth-od for Lithium Ion Battery[J]. J. Alloy. Compd., 2021,858157703. doi: 10.1016/j.jallcom.2020.157703

    17. [17]

      Liu F, Liu Y X, Wang E Y, Ruan J J, Chen S M. Double-Buffer Silicon-Carbon Anode Material by a Dynamic Self-Assembly Process for Lithium-Ion Batteries[J]. Electrochim. Acta, 2021,393139041. doi: 10.1016/j.electacta.2021.139041

    18. [18]

      Liu R P, Shen C, Dong Y, Qin J L, Wang Q, Iocozzia J, Zhao S Q, Yuan K J, Han C P, Li B H, Lin Z Q. Sandwich-like CNTs/Si/C Nanotubes as High Performance Anode Materials for Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2018,6(30):14797-14804. doi: 10.1039/C8TA04686G

    19. [19]

      Lotfabad E M, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D. Si Nanotubes ALD Coated with TiO2, TiN or Al2O3 as High Performance Lithium Ion Battery Anodes[J]. J. Mater. Chem. A, 2014,2(8):2504-2516. doi: 10.1039/C3TA14302C

    20. [20]

      Ye J C, An Y H, Heo T W, Biener M M, Nikolic R J, Tang M, Jiang H, Wang Y M. Enhanced Lithiation and Fracture Behavior of Silicon Mesoscale Pillars via Atomic Layer Coatings and Geometry Design[J]. J. Power Sources, 2014,248:447-456. doi: 10.1016/j.jpowsour.2013.09.097

    21. [21]

      Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H R, Yan B, Li D J, Lu S G, Koo A, Adair K, Sun X L. Significantly Improving Cycling Performance of Cathodes in Lithium Ion Batteries: The Effect of Al2O3 and LiAlO2 Coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018,44:111-120. doi: 10.1016/j.nanoen.2017.11.010

    22. [22]

      Ai Q, Li D P, Guo J G, Hou G M, Sun Q, Sun Q D, Xu X Y, Zhai W, Zhang L, Feng J K, Si P C, Lou J, Ci L J. Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithium-Ion Batteries[J]. Adv. Mater. Interfaces, 2019,6(21)1901187. doi: 10.1002/admi.201901187

    23. [23]

      Wu Y, Li Y F, Wang L Y, Bai Y J, Zhao Z Y, Yin L W, Li H. Enhancing the Li-Ion Storage Performance of Graphite Anode Mate-rial Modified by LiAlO2[J]. Electrochim. Acta, 2017,235:463-470. doi: 10.1016/j.electacta.2017.03.129

    24. [24]

      Fang Z K, Zhu Y R, Yi T F, Xie Y. Li4Ti5O12-LiAlO2 Composite as High Performance Anode Material for Lithium-Ion Battery[J]. ACS Sustainable Chem. Eng., 2016,4(4):1994-2003. doi: 10.1021/acssuschemeng.5b01271

    25. [25]

      Huang S Y, Qin X, Miao X Y, Xu X R, Lei C R, Wei T Y. Novel Core-Dual Shell Si@MoO2@C Nanoparticles as Improved Anode Materials for Lithium-Ion Batteries[J]. ChemElectroChem, 2021,8(4):675-680. doi: 10.1002/celc.202001401

    26. [26]

      Nie P, Le Z Y, Chen G, Liu D, Liu X Y, Wu H B, Xu P C, Li X R, Liu F, Chang L M, Zhang X G, Lu Y F. Graphene Caging Silicon Par-ticles for High-Performance Lithium-Ion Batteries[J]. Small, 2018,14(25)1800635. doi: 10.1002/smll.201800635

    27. [27]

      Liu X Y, Shen C, Lu J, Liu G F, Jiang Y, Gao Y, Li W R, Zhao B, Zhang J J. Graphene Bubble Film Encapsulated Si@C Hollow Spheres as a Durable Anode Material for Lithium Storage[J]. Electrochim. Acta, 2020,361137074. doi: 10.1016/j.electacta.2020.137074

    28. [28]

      Kamali A R, Kim H K, Kim K B, Kumar V R, Fray D J. Large Scale Green Production of Ultra-High Capacity Anode Consisting of Gra-phene Encapsulated Silicon Nanoparticles[J]. J. Mater. Chem. A, 2017,5(36):19126-19135.

    29. [29]

      Dong H, Fu X L, Wang J, Wang P, Ding H, Song R, Wang S M, Li R R, Li S Y. In-Situ Construction of Porous Si@C Composites with LiCl Template to Provide Silicon Anode Expansion Buffer[J]. Carbon, 2021,173:687-695.

    30. [30]

      Wei Q, Chen Y M, Hong X J, Song C L, Yang Y, Si L P, Zhang M, Cai Y P. Novel Bread-like Nitrogen-Doped Carbon Anchored Nano-Silicon as High-Stable Anode for Lithium-Ion Batteries[J]. Appl. Surf. Sci., 2020,511145609.

    31. [31]

      Yi T F, Li Y, Fang Z K, Cui P, Luo S H, Xie Y. Improving the Cycling Stability and Rate Capability of LiMn0.5Fe0.5PO4/C Nanorod as Cathode Materials by LiAlO2 Modification[J]. J. Materiomics, 2020,6(1):33-44.

    32. [32]

      Qiu S, Lu G X, Liu J R, Lyu H L, Hu C X, Li B, Yan X R, Guo J, Guo Z H. Enhanced Electrochemical Performances of MoO2 Nanoparticles Composited with Carbon Nanotubes for Lithium-Ion Battery Anodes[J]. RSC Adv., 2015,5(106):87286-87294.

    33. [33]

      Luo Z, Xu Y, Gong C R, Zheng Y Q, Zhou Z X, Yu L M. An Ultravio-let Curable Silicon/Graphite Electrode Binder for Long-Cycling Lith-ium Ion Batteries[J]. J. Power Sources, 2021,485229348.

    34. [34]

      Lin L D, Xu X N, Chu C X, Majeed M K, Yang J. Mesoporous Amor-phous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries[J]. Angew. Chem. Int. Ed., 2016,55(45):14063-14066.

    35. [35]

      Epur R, Ramanathan M, Beck F R, Manivannan A, Kumta P N. Elec-trodeposition of Amorphous Silicon Anode for Lithium Ion Batteries[J]. Mater. Sci. Eng. B, 2012,177(14):1157-1162.

    36. [36]

      Wang Z G, Zheng B, Liu H, Zhang C, Wu F F, Luo H Y, Yu P. One-Step Synthesis of Nanoporous Silicon@Graphitized Carbon Compos-ite and Its Superior Lithium Storage Properties[J]. J. Alloy. Compd., 2021,861157955.

  • 加载中
    1. [1]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    2. [2]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    3. [3]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    4. [4]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    5. [5]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    6. [6]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    7. [7]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    10. [10]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    13. [13]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    14. [14]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    17. [17]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    20. [20]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

Metrics
  • PDF Downloads(8)
  • Abstract views(367)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return