Citation: Ying‐Yuan HU, Rui LÜ, Wen‐Long ZHANG, Jian‐Xin LIU, Rui LI, Cai‐Mei FAN. One⁃Pot Electrochemical Preparation and Performance of BiOCl0.5Br0.5/BiPO4 Double⁃Layer Heterojunction Thin Film Photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1577-1585. doi: 10.11862/CJIC.2022.153 shu

One⁃Pot Electrochemical Preparation and Performance of BiOCl0.5Br0.5/BiPO4 Double⁃Layer Heterojunction Thin Film Photocatalyst

Figures(11)

  • BiOCl0.5Br0.5/BiPO4 double‐layer heterojunction thin film photocatalyst was successfully prepared on Bi plate by one‐pot electrochemical method. The crystal structure, elemental composition and valence, morphology and optical property were characterized. The as‐obtained double‐layer film consisted of BiOCl0.5Br 0.5 solid solution layer at the bottom and BiPO4 nanoparticles layer at the top. The interface internal electric field of BiOCl0.5Br0.5/BiPO4 composite film led the photo‐induced electrons and holes to shift in the opposite direction, thus improving the photocatalytic performance of BiOCl0.5Br0.5/BiPO4 composite film. The results displayed that the photodegradation efficiency of phenol reached 99.97% after 120 min under simulated sunlight irradiation, which was nearly 1.69 times and 1.20 times more than that of BiOCl/BiPO4 and BiOBr/BiPO4 composite films, respectively. Besides, the hole (h+) and hydroxyl radical (·OH) played a crucial role in the photodegradation process of phenol. The improved photocatalytic performance of BiOCl 0.5Br0.5/BiPO4 composite film can be ascribed to the broadened absorbance spectra range and efficient separation of photo‐induced charge carriers.
  • 加载中
    1. [1]

      Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies[J]. Chin. J. Catal., 2022,43(2):178-214. doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Wang S C, Wang L Z, Huang W. Bismuth ‐ Based Photocatalysts for Solar Energy Conversion[J]. J. Mater. Chem. A, 2020,8:24307-24352. doi: 10.1039/D0TA09729B

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Zhu X D, Jhang J H, Zhou C, Dagdeviren O E, Chen Z, Schwarz U D, Altman E I. Using ZnO‐Cr2O3‐ZnO Heterostructures to Characterize Polarization Penetration Depth through Non‐polar Films[J]. Phys. Chem. Chem. Phys., 2017,19:32492-32504. doi: 10.1039/C7CP06059A

    5. [5]

      Liu C T, Wang B J, Han T, Shi D M, Wang G F. Fe Foil‐Guided Fabrication of Uniform Ag@AgX Nanowires for Sensitive Detection of Leukemia DNA[J]. ACS Appl. Mater. Interfaces, 2019,11(5):4820-4825. doi: 10.1021/acsami.8b18700

    6. [6]

      Martin D J, Liu G G, Moniz S J A, Bi Y P, Beale A M, Ye J H, Tang J W. Efficient Visible Driven Photocatalyst, Silver Phosphate: Performance, Understanding and Perspective[J]. Chem. Soc. Rev., 2015,44:7808-7828. doi: 10.1039/C5CS00380F

    7. [7]

      Liao G F, Gong Y, Zhang L, Gao H Y, Yang G J, Fang B Z. Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: The"Holy Grail"for the Photocatalytic Hydrogen Evolution Reaction under Visible Light[J]. Energy Environ. Sci., 2019,12:2080-2147. doi: 10.1039/C9EE00717B

    8. [8]

      Chandrasekaran S, Yao L, Deng L B, Bowen C, Zhang Y, Chen S M, Lin Z Q, Peng F, Zhang P X. Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond[J]. Chem. Soc. Rev., 2019,48:4178-4280. doi: 10.1039/C8CS00664D

    9. [9]

      Jing L Q, Zhou W, Tian G H, Fu H G. Surface Tuning for Oxide‐Based Nanomaterials as Efficient Photocatalysts[J]. Chem. Soc. Rev., 2013,42:9509-9549. doi: 10.1039/c3cs60176e

    10. [10]

      Bhachu D S, Moniz S J A, Sathasivam S, Scanlon D O, Walsh A, Bawaked S M, Mokhtar M, Obaid A Y, Parkin I P, Tang J W, Carmalt C J. Bismuth Oxyhalides: Synthesis, Structure and Photoelectrochemical Activity[J]. Chem. Sci., 2016,7:4832-4841. doi: 10.1039/C6SC00389C

    11. [11]

      Gao M M, Zhu L L, Ong W L, Wang J, Ho G W. Structural Design of TiO2 ‐Based Photocatalyst for H2 Production and Degradation Applications[J]. Catal. Sci. Technol., 2015,5:4703-4726. doi: 10.1039/C5CY00879D

    12. [12]

      Wang C L, Sun Z X, Zheng Y, Hu Y H. Recent Progress in Visible Light Photocatalytic Conversion of Carbon Dioxide[J]. J. Mater. Chem. A, 2019,7:865-887. doi: 10.1039/C8TA09865D

    13. [13]

      Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO4[J]. Nat. Commun., 2013,4:1432-1438. doi: 10.1038/ncomms2401

    14. [14]

      Xiao X, Sheng Z Y, Yang L, Dong F. Low ‐ Temperature Selective Catalytic Reduction of NOx with NH3 over a Manganese and Cerium Oxide/Graphene Composite Prepared by a Hydrothermal Method[J]. Catal. Sci. Technol., 2016,6:1507-1514. doi: 10.1039/C5CY01228G

    15. [15]

      Wrede S, Tian H N. Towards Sustainable and Efficient p‐Type Metal Oxide Semiconductor Materials in Dye‐Sensitised Photocathodes for Solar Energy Conversion[J]. Phys. Chem. Chem. Phys., 2020,22:13850-13861. doi: 10.1039/D0CP01363C

    16. [16]

      Nguyen H T, Yang D, Zhu B, Lin H, Ma T Y, Jia B H. Doping Mechanism Directed Graphene Applications for Energy Conversion and Storage[J]. J. Mater. Chem. A, 2021,9:7366-7395. doi: 10.1039/D0TA11939C

    17. [17]

      Zhang F F, Zhu Y L, Lin Q, Zhang L, Zhang X W, Wang H T. Noble‐Metal Single‐Atoms in Thermocatalysis, Electrocatalysis, and Photocatalysis[J]. Energy Environ. Sci., 2021,14:2954-3009. doi: 10.1039/D1EE00247C

    18. [18]

      Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C, Ajayan P M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution under Visible Light[J]. Adv. Mater., 2013,25:2452-2456. doi: 10.1002/adma.201204453

    19. [19]

      Yuan Y J, Ye Z J, Lu H W, Hu B, Li Y H, Chen D Q, Zhong J S, Yu Z T, Zou Z G. Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two ‐ Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation[J]. ACS Catal., 2016,6(2):532-541. doi: 10.1021/acscatal.5b02036

    20. [20]

      Priebe J B, Karnahl M, Junge H, Beller M, Hollmann D, Bruckner A. Water Reduction with Visible Light: Synergy between Optical Transitions and Electron Transfer in Au‐TiO2 Catalysts Visualized by In Situ EPR Spectroscopy[J]. Angew. Chem. Int. Ed., 2013,52:11420-11424. doi: 10.1002/anie.201306504

    21. [21]

      Vehkamäki M, Hatanpää T, Ritala M, Leskelä M. Bismuth Precursors for Atomic Layer Deposition of Bismuth‐Containing Oxide Films[J]. J. Mater. Chem., 2004,14:3191-3197. doi: 10.1039/B405891G

    22. [22]

      Choi H, Stathatos E, Dionysiou D D. Photocatalytic TiO2 Films and Membranes for the Development of Efficient Wastewater Treatment and Reuse Systems[J]. Desalination, 2007,202:199-206. doi: 10.1016/j.desal.2005.12.055

    23. [23]

      Huang J, He Y R, Chen M J, Jiang B C, Huang Y M. Solar Evaporation Enhancement by a Compound Film Based on Au@TiO2 Core‐Shell Nanoparticles[J]. Sol. Energy, 2017,155:1225-1232. doi: 10.1016/j.solener.2017.07.070

    24. [24]

      Li K, Zhang H B, Tang Y P, Ying D W, Xu Y L, Wang Y L, Jia J P. Photocatalytic Degradation and Electricity Generation in a Rotating Disk Photoelectrochemical Cell over Hierarchical Structured BiOBr Film[J]. Appl. Catal. B, 2015,164:82-91. doi: 10.1016/j.apcatb.2014.09.017

    25. [25]

      Todorova N, Giannakopoulou T, Pomoni K, Yu J G, Vaimakis T, Trapalis C. Photocatalytic NOx Oxidation over Modified ZnO/TiO2 Thin Films[J]. Catal. Today, 2015,252:41-46. doi: 10.1016/j.cattod.2014.11.008

    26. [26]

      He Z L, Que W X, Xing Y L, Liu X B. Reporting Performance in MoS2 ‐TiO2 Bilayer and Heterojunction Films Based Dye ‐Sensitized Photovoltaic Devices[J]. J. Alloy. Compd., 2016,672:481-488. doi: 10.1016/j.jallcom.2016.02.186

    27. [27]

      Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J, Zhu X M. Fabrication of a Z ‐ Scheme {001}/{110} Facet Heterojunction in BiOCl to Promote Spatial Charge Separation[J]. ACS Appl. Mater. Interfaces, 2020,12(28):31532-31541. doi: 10.1021/acsami.0c08687

    28. [28]

      Xu M L, Jiang X J, Li J R, Wang F J, Li K, Cheng X. Self‐Assembly of a 3D Hollow BiOBr@Bi ‐MOF Heterostructure with Enhanced Photocatalytic Degradation of Dyes[J]. ACS Appl. Mater. Interfaces, 2021,13(47):56171-56180. doi: 10.1021/acsami.1c16612

    29. [29]

      Mohaghegh N, Rahimi E, Gholami M R. Ag3PO4/BiPO4 p‐n Heterojunction Nanocomposite Prepared in Room ‐ Temperature Ionic Liquid Medium with Improved Photocatalytic Activity[J]. Mater. Sci. Semicond. Process., 2015,39:506-514. doi: 10.1016/j.mssp.2015.05.066

    30. [30]

      Zhang X C, Lu B Q, Li R, Li X L, Gao X Y, Fan C M. Simple Hydrolysis ‐ Photodeposition Route to Synthesize Ag/BiOCl0.5Br0.5 Composites with Highly Enhanced Visible‐Light Photocatalytic Properties[J]. Sep. Purif. Technol., 2015,154:68-75. doi: 10.1016/j.seppur.2015.09.021

    31. [31]

      Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Composition Dependence of the Photocatalytic Activities of BiOCl1-xBrx Solid Solutions Under Visible Light[J]. Chem. Eur. J., 2011,17:9342-9349. doi: 10.1002/chem.201100952

    32. [32]

      Qi Y L, Zheng Y F, Song X C. Synthetic Adjustable Energy Band Structure of BiPO4‐BiOClxBr 1 -x p‐n Heterojunctions with Excellent Photocatalytic Activity[J]. J. Taiwan Inst. Chem. Eng., 2017,77:216-226. doi: 10.1016/j.jtice.2017.05.005

  • 加载中
    1. [1]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    15. [15]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    16. [16]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(3)
  • Abstract views(1033)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return