Citation: Cheng-Gang LI, Ying-Qi CUI, Hao TIAN, Jie ZHANG, Qin-Qin SHAO, Zi-Gang SHEN, Bao-Zeng REN. Theoretical Study on Geometric Structures, Electronic, and Thermodynamics Properties of VB2n- (n=8-12) Clusters[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1523-1532. doi: 10.11862/CJIC.2022.150 shu

Theoretical Study on Geometric Structures, Electronic, and Thermodynamics Properties of VB2n- (n=8-12) Clusters

  • Corresponding author: Ying-Qi CUI, yqcui2007@163.com
  • Received Date: 8 February 2022
    Revised Date: 9 May 2022

Figures(9)

  • The geometric structures, electronic, and thermodynamic properties of vanadium doped boron clusters, VB2n- (n=8 -12), were investigated systemically by using CALYPSO searching method and density functional theory. It is found that vanadium atom doping significantly modifies the structures of the boron clusters and strong the chem- ical activity of systems. A drum-shaped structure is the global minimum for VB16- cluster with C2v point symmetry. Tubular-shaped VB18- and VB20- with C2v and Cs symmetry exhibit a metal-centred tubular with a B 2 unit over the B16 and B 18 drum, respectively. For VB22- and VB24- clusters, vanadium atom tends to encapsulate into boron cages. Based on the lowest energy structures, the charge transfer and polarizability were explored, the photoelectron spec- tra, infrared spectra, and Raman spectra were simulated, the fluxional bonds and aromatic properties were analyzed. At last, the thermodynamic properties were investigated, the thermodynamics parameters were discussed for the lowest energy structures of VB2n- (n=8-12) clusters.
  • 加载中
    1. [1]

      LI L, WANG J W, HUO Y J, SUN C F, ZHANG H Y, ZAHGN C F. Preparation of Polyvinylpyrrolidone-Protected Fluorescent Copper Nanoclusters for Rapid and Accurate Detection of Ethanol[J]. Chinese J. Inorg. Chem., 2021,37(12):2113-2124. doi: 10.11862/CJIC.2021.258

    2. [2]

      ZHNEG M, ZHANG H X, YUAN F L, PAN Q J. Relativistic DFT Calculations of Interaction between Rutile TiO2 Nanoparticle Clusters and Uranyl Species[J]. Chinese J. Inorg. Chem., 2018,34(5):874-882.  

    3. [3]

      CHANG G R, LU X Y, PEI C, CHEN L, LI Z. Application of Mesoporous Titanium Composite Nanoclusters in Photothermal/Photodynamics Therapy[J]. Chinese J. Inorg. Chem., 2016,32(7):1141-1148.  

    4. [4]

      Alexandorova A N, Zhai H J, Wang L S, Boldyrev A I. Molecular Wheel B82- as a New Inorganic Ligand[J]. Photoelectron Spectroscopy and Ab Initio Characterization of LiB8-. Inorg. Chem., 2004,43:3552-3554.

    5. [5]

      Piazza Z A, Li W L, Romanescu C, Sergeeva A P, Wang L S, Boldyrev A I. A Photoelectron Spectroscopy and Ab Initio Study of B21-: Negatively Charged Boron Clusters Continue to be Planar at 21[J]. J. Chem. Phys., 2012,136104310. doi: 10.1063/1.3692967

    6. [6]

      Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S. Planar Hexagonal B 36 as a Potential Basis for Extended Single-Atom Layer Boron Sheets[J]. Nat. Commun., 2014,53113. doi: 10.1038/ncomms4113

    7. [7]

      Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I, Zakrzewski V G. Photoelectron Spectroscopy and Ab Initio Study of B3- and B4- Anions and Their Neutrals[J]. J. Phys. Chem. A, 2003,107:9319-9328.

    8. [8]

      Piazza Z A, Popov I A, Li W L, Pal R, Zeng X C, Boldyrev A I, Wang L S. A Photoelectron Spectroscopy and Ab Initio Study of the Structures and Chemical Bonding of the B25 Cluster[J]. J. Chem. Phys., 2014,141034303. doi: 10.1063/1.4879551

    9. [9]

      Chen Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D. Cage-like B41+ and B422+: New Chiral Members of the Borospherene Family[J]. Angew. Chem. Int. Ed., 2015,54:8160-8164. doi: 10.1002/anie.201501588

    10. [10]

      Alexandorova A N, Boldyrev A I, Zhai H J, Wang L S. Photoelectron Spectroscopy and Ab Initio Study of the Doubly Antiaromatic B62- Dianion in the LiB6- Cluster[J]. J. Chem. Phys., 2005,122054313. doi: 10.1063/1.1839575

    11. [11]

      Alexandorova A N, Boldyrev A I, Zhai H J, Wang L S, Steiner E, Fowler P W. Structures and Bonding in B6- and B6: Planarity and Antiaromaticity[J]. J. Phys. Chem. A, 2003,107:1359-1369. doi: 10.1021/jp0268866

    12. [12]

      Li W L, Romanescu C, Galeev T R, Piazza Z A, Boldyrev A I, Wang L S. Transition-Metal-Centered Nine-Membered Boron Rings: MB9 and MB9-(M=Rh, Ir)[J]. J. Am. Chem. Soc., 2012,134:165-168. doi: 10.1021/ja209808k

    13. [13]

      Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S. Aromatic Metal-Centered Monocyclic Boron Rings: Co©B8- and Ru©B9-[J]. Angew. Chem. Int. Ed., 2011,123:9506-9509. doi: 10.1002/ange.201104166

    14. [14]

      Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I. Observation of the Highest Coordination Number in Planar Species: Decacoordinated TaB10- and NbB10- Anions[J]. Angew. Chem. Int. Ed., 2012,51:2143-2147.

    15. [15]

      Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S. Complexes between Planar Boron Clusters and Transition Metals: A Photoelectron Spectroscopy and Ab Initio Study of CoB12- and RhB12-[J]. J. Phys. Chem. A, 2014,118:8098-8105. doi: 10.1021/jp411867q

    16. [16]

      Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I. Valence Isoelectronic Substitution in the B8- and B9- Molecular Wheels by an Al Dopant Atom: Umbrella-like Structures of AlB7- and AlB8-[J]. J. Chem. Phys., 2011,135104301. doi: 10.1063/1.3625959

    17. [17]

      Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S. Cobalt-Centred Boron Molecular Drums with the Highest Coordination Number in the CoB16- Cluster[J]. Nat. Commun., 2015,68654. doi: 10.1038/ncomms9654

    18. [18]

      Pham H T, Nguyen M T. Formation of the MB18 Teetotum Boron Clusters with 4d and 5d Transition Metals, M=Rh, Pd, Ir, Pt[J]. J. Phys. Chem. A, 2019,123(38):8170-8178. doi: 10.1021/acs.jpca.9b04078

    19. [19]

      Ariyarathna I R. Ground and Electronically Excited States of Main-Group-Metal-Doped B20 Double Ring[J]. J. Phys. Chem., 2022,126(4):506-512. doi: 10.1021/acs.jpca.1c08631

    20. [20]

      Celaya C A, Buendia F, Miralrio A, Borhon L O P, Beltran M, Nguyen M T, Sansores L E. Structures, Stabilities and Aromatic Properties of Endohedrally Transition Metal Doped Boron Clusters MB22, M=Sc and Ti: A Theoretical Study[J]. Phys. Chem. Phys. Chem., 2020,22:8077-8087. doi: 10.1039/D0CP00307G

    21. [21]

      Dong X, Jalife S, Espinal A V, Barroso J, Orozco M, Ravell E, Cabellos J L, Liang W Y, Cui Z H, Merino G. Li2B24: The Simplest Combination for a Three-Ring Boron Tube[J]. Nanoscale, 2019,11:2143-2147. doi: 10.1039/C8NR09173K

    22. [22]

      Li W L. Romanescu C, Piazza Z A, Wang L S[J]. Geometrical Requirements for Transition-Metal-Centered Aromatic Boron Wheels: The Case of VB10-. Phys. Chem. Phys. Chem., 2012,14:13663-13669.

    23. [23]

      Chen Q, Zhao Y X, Jiang L X, Li H F, Chen J J, Zhang T, Liu Q Y, He S G. Thermal Activation of Methane by Vanadium Boride Cluster Cations VBn+ (n=3-6)[J]. Phys. Chem. Phys. Chem., 2018,20:4641-4645. doi: 10.1039/C8CP00071A

    24. [24]

      Pham H T, Phan P M H, Nguyen M T. Impressive Capacity of the B7- and V2B7 Clusters for CO2 Capture[J]. Chem. Phys. Lett., 2019,728:186-194. doi: 10.1016/j.cplett.2019.04.087

    25. [25]

      Tran V T, Tran Q T. Geometric and Electronic Structures of VB40/+/- Clusters and Reactivity of the Cationic Cluster with Methane from Quantum Chemical Calculations[J]. J. Phys. Chem. A, 2019,123(42):9223-9233. doi: 10.1021/acs.jpca.9b08536

    26. [26]

      Li C G, Shen Z G, Zhang J, Cui Y Q, Li J J, Xue H Y, Li H F, Ren B Z, Hu Y F. Analysis of the Structures, Stabilities and Electronic Properties of MB16-(M=V, Cr, Mn, Fe, Co, Ni) Clusters and Assemblies[J]. New. J. Chem., 2020,44:5109-5119. doi: 10.1039/C9NJ06335H

    27. [27]

      LI W J, LI G L, MA Y, ZHOU L G, WANG Y X, LIU S S, LI C G, CUI Y Q, REN B Z, HU Y F. Geometric Structures, Electronic and Spectral Properties of VnB8(n+1)-1 (n=1-3) Clusters[J]. Journal of Atomic and Molecular Physics, 2021,38(4)042006.  

    28. [28]

      Li C G, Li H J, Cui Y Q, Tian H, Shao Q Q, Zhang J, Zhao G, Ren B Z, Hu Y F. A Density Functional Investigation on the Structures, Electronic, Spectral and Fluxional Properties of VB20- Cluster[J]. J. Mol. Liq., 2021,339116764. doi: 10.1016/j.molliq.2021.116764

    29. [29]

      Wang Y C, Lv J, Zhu L, Ma Y M. Crystal Structure Prediction via Particle Swarm Optimization[J]. Phys. Rev. B, 2010,82094116. doi: 10.1103/PhysRevB.82.094116

    30. [30]

      Wang Y C, Lv J, Zhu L, Ma Y M. CALYPSO: A Method for Crystal Structure Prediction[J]. Comput. Phys. Commun., 2012,183:2063-2070. doi: 10.1016/j.cpc.2012.05.008

    31. [31]

      Lv J, Wang Y C, Zhu L, Ma Y M. Particle Swarm Structure Prediction on Clusters[J]. J. Chem. Phys., 2012,13784104. doi: 10.1063/1.4746757

    32. [32]

      Perdew J P, Burke K, Ernzerhof M. Generalize Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    33. [33]

      Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model[J]. J. Chem. Phys., 1999,110:6158-6170. doi: 10.1063/1.478522

    34. [34]

      Tao J, Perdew J P, Staroverov V N, Scuseria G E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids[J]. Phys. Rev. Lett., 2003,91:146401-146405. doi: 10.1103/PhysRevLett.91.146401

    35. [35]

      LI C G, ZHANG J, SHEN Z G, CUI Y Q, REN B Z, YUAN Y Q, HU Y F. Investigation of Structure, Electronic and Spectral Properties of NiB20- Cluster[J]. Acta Optica Sinica, 2020,40(20):144-149.  

    36. [36]

      Li C G, Cui Y Q, Tian H, Shao Q Q, Zhang J, Ren B Z, Yuan Y Q. Systematic Investigation of Geometric Structures and Electronic Properties of Lithium Doped Magnesium Clusters[J]. Comput. Mater. Sci., 2021,200110800. doi: 10.1016/j.commatsci.2021.110800

    37. [37]

      Li C G, Cui Y Q, Li J X, Guo J S, Cheng L, Ren B Z, Yuan Y Q. Probing the Structural, Electronic and Spectral Properties of a NbB20- Cluster[J]. Mol. Phys., 2021,119(10)1910744. doi: 10.1080/00268976.2021.1910744

    38. [38]

      Lu C, Miao M S, Ma Y M. Structural Evolution of Carbon Dioxide Under High Pressure[J]. J. Am. Chem. Soc., 2013,135:14167-14171. doi: 10.1021/ja404854x

    39. [39]

      Zhao Y R, Xu Y Q, Chen P, Yuan Y Q, Qian Y, Li Q. Structural and Electronic Properties of Medium-Sized Beryllium Doped Magnesium BeMgn Clusters and Their Anions[J]. Results. Phys., 2021,26104341. doi: 10.1016/j.rinp.2021.104341

    40. [40]

      Zhao Y. R, Bai T T, Jia L N, Xin W, Hu Y H, Zheng X S[J]. Probing the Structural and Electronic Properties of Neutral and Anionic Lanthanum-Doped Silicon Clusters. J. Phys. Chem. C, 2019,123:28561-28568.

    41. [41]

      Jin S Y, Chen B L, Kuang X Y, Lu C, Sun W G, Xia X X, Gutsev G L. Structural and Electronic Properties of Medium-Sized Aluminum-Doped Boron Clusters AlBn and Their Anions[J]. J. Phys. Chem. C, 2019,123:6276-6283. doi: 10.1021/acs.jpcc.9b00291

    42. [42]

      Peng J F, Jin W Y, Kuang X Y, Lu C. Two-Dimensional Fe8N Nanosheets: Ferromagnets and Nitrogen Diffusion[J]. J. Phys. Chem. Lett., 2021,12(35):8453-8459. doi: 10.1021/acs.jpclett.1c02242

    43. [43]

      Chen B L, Sun W G, Kuang X Y, Lu C, Xia X X, Shi H X, Maroulis G. Structural Stability and Evolution of Medium-Sized Tantalum -Doped Boron Clusters: A Half-Sandwich-Structured TaB12- Cluster[J]. Inorg. Chem., 2018,57:343-350. doi: 10.1021/acs.inorgchem.7b02585

    44. [44]

      Li Q Y, Xi S G, Hu Y F, Yuan Y Q, Zhao Y R, Li M C, Yuan J J, Yang Y J. Probing the Structural and Electronic Properties of Neutral and Anionic Strontium-Doped Magnesium Clusters[J]. Comput. Mater. Sci., 2021,197110605. doi: 10.1016/j.commatsci.2021.110605

    45. [45]

      Lu C, Gong W G, Li Q, Chen C F. Elucidating Stress-Strain of ZrB12 from First-Principles Studies[J]. J. Phys. Chem. Lett., 2020,11:9165-9170. doi: 10.1021/acs.jpclett.0c02656

    46. [46]

      Shen X Y, Die D, Yang J P, Guo J J. The Ground State Structures and Spectra of Ag20 Clusters and the Adsorption to Carbon Monoxide[J]. Mater. Chem. Phys., 2021,273125134. doi: 10.1016/j.matchemphys.2021.125134

    47. [47]

      Tan L P, Die D, Zheng B X. Growth Mechanism, Electronic Properties and Spectra of Aluminum Clusters[J]. Spectrochim. Acta Part A, 2022,267120545. doi: 10.1016/j.saa.2021.120545

    48. [48]

      Staroverov V N, Scuseria G E, Tao J, Perdew J P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes[J]. J. Chem. Phys., 2003,11912129. doi: 10.1063/1.1626543

    49. [49]

      Yuan Y, Cheng L J. Ferrocene Analogues of Sandwich B12CrB12: A Theory Study[J]. J. Chem. Phys., 2013,138024301. doi: 10.1063/1.4773281

    50. [50]

      Nguyen M T, Hung T P, Duong L V, Pham-Ho M P, Nguyen M T. Fullerene-like Boron Clusters Stability by an Endohedrally Doped Iron Atom: BnFe with n=14, 16, 18 and 20[J]. Phys. Chem. Chem. Phys., 2015,17:3000-3003. doi: 10.1039/C4CP04279D

    51. [51]

      Pham H T, Nguyen M T. Effects of Bimetallic Doping on Small Cyclic and Tubular Boron Clusters: B7M2 and B14M2 Structures with M=Fe, Co[J]. Phys. Chem. Chem. Phys., 2015,17:17335-17345. doi: 10.1039/C5CP01650A

    52. [52]

      Wang L S. Photoelectron Spectroscopy of Size-Selected Boron Clusters: From Planar Structures to Borophenes and Borospherenes[J]. Int. Rev. Phys. Chem., 2016,35:69-142. doi: 10.1080/0144235X.2016.1147816

    53. [53]

      Zhou G D, Duan L Y. Structural Chemistry Basis, Beijing: Peking University Press, 2002: 1-10

    54. [54]

      Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33:580-592. doi: 10.1002/jcc.22885

    55. [55]

      Yan M, Li H R, Zhao X Y, Lu X Q, Mu Y W, Lu H G, Li S D. Fluxional Bonds in Planar B19-, Tubular TaB20-, and Cage-like B39-[J]. J. Comput. Chem., 2019,40:966-970. doi: 10.1002/jcc.25728

    56. [56]

      Yan M, Li H R, Tian X X, Mu Y W, Lu H G, Li S D. Fluxional Bonds in Quasi-Planar B182- and Half-Sandwich MB18- (M=K, Rb, Cs)[J]. J. Comput. Chem., 2019,40:1227-1232. doi: 10.1002/jcc.25782

    57. [57]

      Zhao X Y, Luo X M, Tian X X, Lu H G, Li S D. NiB10, NiB11-, NiB12 and NiB13+ : Half-Sandwich Complexes with the Universal Coordination Bonding Pattern of σ Plus π Double Delocalization[J]. J. Cluster. Sci., 2019,30:115-121. doi: 10.1007/s10876-018-1457-4

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(2)
  • Abstract views(759)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return