Citation: Qi ZHOU, You‐Cheng LUO. Three Dimensional Ni(OH)2/Ni@N-Doped Reduced Graphene Oxide Composite Electrodes as an Electrocatalyst for Hydrogen Evolution Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1541-1548. doi: 10.11862/CJIC.2022.148 shu

Three Dimensional Ni(OH)2/Ni@N-Doped Reduced Graphene Oxide Composite Electrodes as an Electrocatalyst for Hydrogen Evolution Reaction

  • Corresponding author: Qi ZHOU, zhouxq301@sina.com
  • Received Date: 9 March 2022
    Revised Date: 23 May 2022

Figures(8)

  • In this work, 3D flower - like Ni(OH)2/Ni@NG composite electrodes were prepared by combining 3D Ni(OH)2/Ni with nitrogen-doped reduced graphene oxide(rGO)using de-alloying and two-step hydrothermal synthesis.Characterization of the phase, valence distribution, and microstructure of electrodes by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), and transmission electron microscopy(TEM).In addition, the electrocatalytic hydrogen evolution reaction(HER)performance was tested in 1 mol·L-1 KOH solution.The results showed that the three-dimensional structure of Ni(OH)2/Ni increased the active area of the electrode, and the complexation with N-doped rGO significantly improved the electron/ion transport rate with an overpotential of 108 mV(η10)and a Tafel slope of 114.9 mV·dec-1, which exhibited good HER catalytic activity.The Ni(OH)2/Ni@NG electrode showed good stability by both the 1 000-turn cyclic voltammetry method and the chronopotentiometry test.
  • 加载中
    1. [1]

      Gu Y, Xi B J, Wei R C, Fu Q, Qain Y T, Xiong S L. Sponge Assembled by Graphene Nanocages with Double Active Sites to Accelerate Alkaline HER Kinetics[J]. Nano Lett., 2020,20(11):8375-8383. doi: 10.1021/acs.nanolett.0c03565

    2. [2]

      Jiao S L, Fu X W, Wang S Y, Zhao Y. Perfecting the Electrocatalysts via Imperfections: Towards Large-Scale Deployment of Water Electrolysis Technology[J]. Energy Environ. Sci., 2021,14(4):1722-1770. doi: 10.1039/D0EE03635H

    3. [3]

      Zhang Z Q, Cong L C, Yu Z C, Qu L, Huang W M. Facial Synthesis of Fe-Ni Bimetallic N-Doped Carbon Framework for Efficient Electrochemical Hydrogen Evolution Reaction[J]. Mater. Today Energy., 2020,16100387. doi: 10.1016/j.mtener.2020.100387

    4. [4]

      Zhang C F, Ju S H, Kang T H, Park G, Lee B J, Miao H, Wu Y W, Yuan J L, Yu J S. Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production[J]. ACS Appl. Mater. Interfaces, 2021,13(3):4294-4304. doi: 10.1021/acsami.0c17557

    5. [5]

      Zhao C X, Liu J N, Wang J, Ren D, Li B Q, Zhang Q. Recent Advances of Noble-Metal-Free Bifunctional Oxygen Reduction and Evolution Electrocatalysts[J]. Chem. Soc. Rev., 2021,50(13):7745-7778. doi: 10.1039/D1CS00135C

    6. [6]

      Kim H J, Kim H Y, Joo J, Joo S H, Lim J S, Lee J, Huang H, Shao M H, Hu J, Kim J Y, Min B J, Lee S W, Kang M S, Lee K, Choi S, Park Y, Wang Y, Li J J, Zhang Z C, Ma J M, Choi S I. Recent Advances in Non-precious Group Metal-Based Catalysts for Water Electrolysis and Beyond[J]. J. Mater. Chem. A, 2021,10(1):50-88.

    7. [7]

      Lim D, Kim S, Kim N, Oh E, Shim S E, Baeck S H. Strongly Coupled Ni/Ni(OH)2 Hybrid Nanocomposites as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting[J]. ACS Sustainable Chem. Eng., 2020,8(11):4431-4439. doi: 10.1021/acssuschemeng.9b07284

    8. [8]

      Dai L, Chen Z N, Li L X, Yin P Q, Liu Z Q, Zhang H. Ultrathin Ni(0)-Embedded Ni(OH)2 Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting[J]. Adv. Mater., 2020,32(8)1906915. doi: 10.1002/adma.201906915

    9. [9]

      Zhong W D, Li W L, Yang C F, Wu J, Zhao R, Idrees M, Xiang H, Zhang Q, Li X K. Interfacial Electron Rearrangement: Ni Activated Ni(OH)2 for Efficient Hydrogen Evolution[J]. J. Energy Chem., 2021,61:236-242. doi: 10.1016/j.jechem.2021.02.013

    10. [10]

      Niu Y L, Huang X Q, Zhao L, Hu W H, Li C M. One-Pot Synthesis of Co/CoFe2O4 Nanoparticles Supported on N-Doped Graphene for Efficient Bifunctional Oxygen Electrocatalysis[J]. ACS Sustainable Chem. Eng., 2018,6(3):3556-3564. doi: 10.1021/acssuschemeng.7b03888

    11. [11]

      Jing S Y, Zhang L S, Luo L, Lu J J, Yin S B, Shen P K, Tsiakaras P. N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction[J]. Appl. Catal. B, 2018,224533540.

    12. [12]

      LU Y J, WANG H R, GU Y, XU L, SUN X J, DENG Y D. Studies on the Growth Mechanism of Hydrothermal Synthesis of α-Ni(OH)2 Nanowires[J]. Acta Chim. Sinica, 2012,70(16):1731-1736.  

    13. [13]

      Niu S, Jiang W J, Tang T, Zhang Y, Li J H, Hu J S. Facile and Scalable Synthesis of Robust Ni(OH)2 Nanoplate Arrays on NiAl Foil as Hierarchical Active Scaffold for Highly Efficient Overall Water Splitting[J]. Sci. Adv., 2017,4(8)1700084. doi: 10.1002/advs.201700084

    14. [14]

      Xu J X, Yang Y, Chu H, Tang J H, Ge Y C, Shen J F, Ye M X. Novel NiCo2S4@Reduced Graphene Oxide@Carbon Nanotube Nanocomposites for High Performance Supercapacitors[J]. RSC Adv., 2016,6(102):100504-100510. doi: 10.1039/C6RA18732C

    15. [15]

      Han W W, Chen L L, Song W Y, Wang S B, Fan X B, Li Y, Zhang F B, Zhang G L, Peng W C. Synthesis of Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide as Efficient Metal-Free Cocatalyst for the Photo-Activity Enhancement of CdS[J]. Appl. Catal. B, 2018,236:212-221. doi: 10.1016/j.apcatb.2018.05.021

    16. [16]

      Jiang S, Ithisuphalap K, Zeng X R, Wu G, Yang H P. 3D Porous Cellular NiCoO2/Graphene Network as a Durable Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions[J]. J. Power Sources, 2018,399:66-75. doi: 10.1016/j.jpowsour.2018.07.074

    17. [17]

      Liu S Q, Wen H R, Ying G, Zhu Y W, Fu X Z, Sun R, Wong C P. Amorphous Ni(OH)2 Encounter with Crystalline CuS in Hollow Spheres: A Mesoporous Nano-shelled Heterostructure for Hydrogen Evolution Electrocatalysis[J]. Nano Energy, 2018,44:7-14. doi: 10.1016/j.nanoen.2017.11.063

    18. [18]

      He B H, Chen L, Jing M J, Zhou M J, Hou Z H, Chen X B. 3D MoS2-rGO@Mo Nanohybrids for Enhanced Hydrogen Evolution: The Importance of the Synergy on the Volmer Reaction[J]. Electrochim. Acta, 2018,283:357-365. doi: 10.1016/j.electacta.2018.06.168

    19. [19]

      Wang X R, Liu J Y, Liu Z W, Wang W C, Luo J, Han X P, Du X W, Qiao S Z, Yang J. Identifying the Key Role of Pyridinic-N-Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER[J]. Adv. Mater., 2018,30(23)1800005. doi: 10.1002/adma.201800005

    20. [20]

      Jiang H, Gu J X, Zheng X S, Liu M, Qiu X Q, Wang L B, Li W Z, Chen Z F, Ji X B, Li J. Defect-Rich and Ultrathin N Doped Carbon Nanosheets as Advanced Trifunctional Metal-Free Electrocatalysts for the ORR, OER and HER[J]. Energy Environ. Sci., 2019,12(1)322333.

    21. [21]

      Zhao X L, Li F, Wang R N, Seo J M, Choi H J, Jung S M, Mahmood J, Jeon I Y, Baek J B. Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst[J]. Adv. Funct. Mater., 2017,27(9)1605717. doi: 10.1002/adfm.201605717

    22. [22]

      Wang R H, Jayakumar A, Xu C H, Lee J M. Ni(OH)2 Nanoflowers/ Graphene Hydrogels: A New Assembly for Supercapacitors[J]. ACS Sustainable Chem. Eng., 2016,4(7):3736-3742. doi: 10.1021/acssuschemeng.6b00362

    23. [23]

      Chhetri M, Sultan S, Rao C N R. Electrocatalytic Hydrogen Evolution Reaction Activity Comparable to Platinum Exhibited by the Ni/ Ni(OH)2/Graphite Electrode[J]. Proc. Natl. Acad. Sci. U.S.A., 2017,114(34):8986-8990. doi: 10.1073/pnas.1710443114

    24. [24]

      Kumar R, Sahoo S, Joanni E, Singh R K, Maegawa K, Tan W K, Kawamura G, Kar K K, Matsuda A. Heteroatom Doped Graphene Engineering for Energy Storage and Conversion[J]. Mater. Today, 2020,39:47-65.

    25. [25]

      He B H, Chen L, Jing M J, Zhou M J, Hou Z H, Chen X B. 3D MoS2-rGO@Mo Nanohybrids for Enhanced Hydrogen Evolution: The Importance of the Synergy on the Volmer Reaction[J]. Electrochim. Acta, 2018,283:357-365. doi: 10.1016/j.electacta.2018.06.168

    26. [26]

      Zhang C F, Ju S H, Kang T H, Park G, Lee B J, Miao H, Wu Y W, Yuan J L, Yu J S. Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production[J]. ACS Appl. Mater. Interfaces, 2021,13(3):4294-4304. doi: 10.1021/acsami.0c17557

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(2)
  • Abstract views(631)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return