Citation: Yan-Ting ZHANG, Hui DANG, Ni-Ni ZHANG, Sheng-Li CHEN. Hierarchical β Zeolite by Surfactant-Templating Method: Preparation and Catalytic Performance in Tetralin Hydrocracking to Benzene, Toluene, and Xylene[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1350-1360. doi: 10.11862/CJIC.2022.146 shu

Hierarchical β Zeolite by Surfactant-Templating Method: Preparation and Catalytic Performance in Tetralin Hydrocracking to Benzene, Toluene, and Xylene

  • Corresponding author: Sheng-Li CHEN, slchen@cup.edu.cn
  • Received Date: 10 February 2022
    Revised Date: 23 May 2022

Figures(12)

  • In this study, a series of hierarchical β zeolites were prepared from the parent zeolites (β-60 and β-150) by one/two-step surfactant-templating method with cetyltrimethylammonium bromide (CTAB) as the surfactant. The physicochemical properties of the hierarchical β zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption test, and NH3 temperature-programmed desorption (NH3-TPD) test. The results show that the mesopore volume of the hierarchical β zeolites prepared in one step was increased by more than 3 times, and the mesopore volume of hierarchical β zeolites prepared in two steps was increased by more than 1 time compared with the parent zeolite. Furthermore, the hydrocracking catalysts were prepared by loading WO3 onto these hierarchical β zeolites, and their catalytic performance in the hydrocracking of tetralin to benzene (B), toluene (T), and xylene (X) was investigated. Taking β-60 as the parent zeolite, the mesopores of the hierarchically porous β zeolite obtained after one-step or two-step treatment were both disordered, and BTX yields reached 53% and 51%, respectively. However, taking β-150 as the parent zeolite, the mesopores of the hierarchical β zeolites prepared by the one-step method were disordered, while the mesopores of the samples prepared by the two-step method were ordered. The highest yield of BTX prepared by the one-step method was 46%, and that prepared by the two-step method was 50%. Therefore, the catalytic performance of hydrocracking catalyst prepared from hierarchical β zeolites was determined by the mesopore content and degree of order.
  • 加载中
    1. [1]

      Zhang H Y, Xie B, Meng X J, Müller U, Yilmaz B, Feyen M, Maurer S, Gies H, Tatsumi T, Bao X H, Zhang W P, De Vos D, Xiao F S. Rational Synthesis of Beta Zeolite with Improved Quality by Decreasing Crystallization Temperature in Organotemplate-Free Route[J]. Microporous Mesoporous Mater., 2013,180:123-129. doi: 10.1016/j.micromeso.2013.06.031

    2. [2]

      Fernandez S, Ostraat M L, Lawrence Ⅲ J A, Zhang K. Tailoring the Hierarchical Architecture of Beta Zeolites Using Base Leaching and Pore-Directing Agents[J]. Microporous Mesoporous Mater., 2018,263:201-209. doi: 10.1016/j.micromeso.2017.12.023

    3. [3]

      Tian F P, Wu Y H, Shen Q C, Li X, Chen Y Y, Meng C G. Effect of Si/Al Ratio on Mesopore Formation for Zeolite Beta via NaOH Treatment and the Catalytic Performance in α-Pinene Isomerization and Benzoylation of Naphthalene[J]. Microporous Mesoporous Mater., 2013,173:129-138. doi: 10.1016/j.micromeso.2013.02.021

    4. [4]

      Garcia-Martinez J, Xiao C H, Cychosz K A, Li K H, Wan W, Zou X D, Thommes M. Evidence of Intracrystalline Mesostructured Porosity in Zeolites by Advanced Gas Asorption, Electron Tomography and Rotation Electron Diffraction[J]. ChemCatChem, 2014,6(11):3110-3115. doi: 10.1002/cctc.201402499

    5. [5]

      Bai R S, Song Y, Li Y, Yu J H. Creating Hierarchical Pores in Zeolite Catalysts[J]. Trends Chem., 2019,1(6):601-611. doi: 10.1016/j.trechm.2019.05.010

    6. [6]

      Wang L, Diao Z H, Tian Y J, Xiong Z Q, Liu G Z. Catalytic Cracking of Endothermic Hydrocarbon Fuels over Ordered Meso-HZSM-5 Zeolites with Al-MCM-41 Shells[J]. Energy Fuels, 2016,30(9):6977-6983. doi: 10.1021/acs.energyfuels.6b01160

    7. [7]

      Koohsaryan E, Anbia M. Nanosized and Hierarchical Zeolites: A Short Review[J]. Chin. J. Catal., 2016,37(4):447-467. doi: 10.1016/S1872-2067(15)61038-5

    8. [8]

      Dai H, Lee C, Liu W, Yang T M, Claret J, Zou X D, Dauenhauer P J, Li X J, Rimer J D. Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization[J]. Angew. Chem. Int. Ed., 2022,134(8)e202113077.

    9. [9]

      Kerstens D, Smeyers B, Van Waeyenberg J, Zhang Q, Yu J H, Sels B F. State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis[J]. Adv. Mater., 2020,32(44)2004690. doi: 10.1002/adma.202004690

    10. [10]

      Peng P, Stosic D, Aitblal A, Vimont A, Bazin P, Liu X M, Yan Z F, Mintova S, Travert A. Unraveling the Diffusion Properties of Zeolite-Based Multicomponent Catalyst by Combined Gravimetric Analysis and IR Spectroscopy (AGIR)[J]. ACS Catal., 2020,10(12):6822-6830. doi: 10.1021/acscatal.0c01021

    11. [11]

      Maghfirah A, Ilmi M M, Fajar A T N, Kadja G T M. A Review on the Green Synthesis of Hierarchically Porous Zeolite[J]. Mater. Today Chem., 2020,17100348. doi: 10.1016/j.mtchem.2020.100348

    12. [12]

      Serrano D P, Escola J M, Pizarro P. Synthesis Strategies in the Search for Hierarchical Zeolites[J]. Chem. Soc. Rev., 2013,42(9):4004-4035. doi: 10.1039/C2CS35330J

    13. [13]

      Wang W N, Zhang W, Chen Y L, Wen X D, Li H, Yuan D L, Guo Q X, Ren S Y, Pang X M, Shen B J. Mild-Acid-Assisted Thermal or Hydrothermal Dealumination of Zeolite Beta, Its Regulation to Al Distribution and Catalytic Cracking Performance to Hydrocarbons[J]. J. Catal., 2018,362:94-105. doi: 10.1016/j.jcat.2018.03.002

    14. [14]

      Yang G C, Wang L T, Jiang H X. Preparation of β Zeolite with Intracrystalline Mesoporosity via Surfactant-Templating Strategy and Its Application in Ethanol-Acetaldehyde to Butadiene[J]. Microporous Mesoporous Mater., 2021,316110949. doi: 10.1016/j.micromeso.2021.110949

    15. [15]

      Konnov S V, Ivanova I I, Ponomareva O A, Zaikovskii V I. Hydroisomerization of n-Alkanes over Pt-Modified Micro/Mesoporous Materials Obtained by Mordenite Recrystallization[J]. Microporous Mesoporous Mater., 2012,164:222-231. doi: 10.1016/j.micromeso.2012.08.017

    16. [16]

      Jardim E D O, Serrano E, Martínez J C, Linares N, García-Martínez J. Consecutive Surfactant-Templating Opens Up New Possibilities for Hierarchical Zeolites[J]. Cryst. Growth Des., 2020,20(2):515-520. doi: 10.1021/acs.cgd.9b01180

    17. [17]

      CHEN H R, ZHOU X X, SHI J L. Research Progress on Hierarchically Porous Zeolites: Structural Control, Synthesis and Catalytic Applications[J]. Chinese J. Inorg. Mater., 2018,33(2):113-127.  

    18. [18]

      Diao Z H, Wang L, Zhang X W, Liu G Z. Catalytic Cracking of Supercritical n-Dodecane over Meso-HZSM-5@Al-MCM-41 Zeolites[J]. Chem. Eng. Sci., 2015,135:452-460. doi: 10.1016/j.ces.2014.12.048

    19. [19]

      Sachse A, Garcia-Martinez J. Surfactant-Templating of Zeolites: From Design to Application[J]. Chem. Mater., 2017,29(9):3827-3853. doi: 10.1021/acs.chemmater.7b00599

    20. [20]

      Ordomsky V V, Ivanova I I, Knyazeva E E, Yuschenko V V, Zaikovskii V I. Cumene Disproportionation over Micro/Mesoporous Catalysts Obtained by Recrystallization of Mordenite[J]. J. Catal., 2012,295:207-216. doi: 10.1016/j.jcat.2012.08.011

    21. [21]

      Sachse A, Grau-Atienza A, Jardim E O, Linares N, Thommes M, García-Martínez J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating[J]. Cryst. Growth Des., 2017,17(8):4289-4305. doi: 10.1021/acs.cgd.7b00619

    22. [22]

      Linares N, Jardim E D O, Sharma G, Serrano E, Navrotsky A, García-Martínez J. Thermochemistry of Surfactant-Templating of USY Zeolite[J]. Chem. Eur. J., 2019,25(43):10045-10048. doi: 10.1002/chem.201901507

    23. [23]

      Linares N, Jardim E D O, Sachse A, Serrano E, García-Martínez J. The Energetics of Surfactant-Templating of Zeolites[J]. Angew. Chem. Int. Ed., 2018,130(28):8860-8864. doi: 10.1002/ange.201803759

    24. [24]

      Fleury G, Mendoza-Castro M J, Linares N, Roeffaers M B J, García-Martínez J. Micelle Formation inside Zeolites: A Critical Step in Zeolite Surfactant-Templating Observed by Raman Microspectroscopy[J]. ACS Mater. Lett., 2021,4(1):49-54.

    25. [25]

      Mendoza-Castro M J, Serrano E, Linares N, García-Martínez J. Surfactant-Templated Zeolites: From Thermodynamics to Direct Observation[J]. Adv. Mater. Interfaces, 2021,8(4)2001388. doi: 10.1002/admi.202001388

    26. [26]

      Chen L H, Sun M H, Wang Z, Yang W M, Xie Z K, Su B L. Hierarchically Structured Zeolites: From Design to Application[J]. Chem. Rev., 2020,120(20):11194-11294. doi: 10.1021/acs.chemrev.0c00016

    27. [27]

      Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite[J]. Chem. Mater., 2008,20(14):4533-4535. doi: 10.1021/cm801167e

    28. [28]

      Oh Y, Shin J, Noh H, Kim C, Kim Y S, Lee Y K, Lee J K. Selective Hydrotreating and Hydrocracking of FCC Light Cycle Oil into High-Value Light Aromatic Hydrocarbons[J]. Appl. Catal. A, 2019,577:86-98. doi: 10.1016/j.apcata.2019.03.004

    29. [29]

      Kim Y S, Cho K S, Lee Y K. Morphology Effect of β-Zeolite Supports for Ni2P Catalysts on the Hydrocracking of Polycyclic Aromatic Hydrocarbons to Benzene, Toluene, and Xylene[J]. J. Catal., 2017,351:67-78. doi: 10.1016/j.jcat.2017.03.006

    30. [30]

      Wu T, Chen S L, Yuan G M, Xu J, Huang L X, Cao Y Q, Fan T T. High-Selective-Hydrogenation Activity of W/Beta Catalyst in Hydrocracking of 1-Methylnaphalene to Benzene, Toluene and Xylene[J]. Fuel, 2018,234:1015-1025. doi: 10.1016/j.fuel.2018.07.133

    31. [31]

      Laredo G C, Merino P M V, Hernández P S. Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review[J]. Ind. Eng. Chem. Res., 2018,57(22):7315-7321. doi: 10.1021/acs.iecr.8b00248

    32. [32]

      Lee J, Choi Y, Shin J, Lee J K. Selective Hydrocracking of Tetralin for Light Aromatic Hydrocarbons[J]. Catal. Today, 2016,265:144-153. doi: 10.1016/j.cattod.2015.09.046

    33. [33]

      XIN Q. Modern Catalysis Research Methods. Beijing: Science Press, 2009: 31-41

    34. [34]

      Lee S U, Lee Y J, Kim J R, Jeong S Y. Rational Synthesis of Silylated Beta Zeolites and Selective Ring Opening of 1-Methylnaphthalene over the NiW-Supported Catalysts[J]. Appl. Catal. B, 2017,219:1-9. doi: 10.1016/j.apcatb.2017.07.047

    35. [35]

      ZHANG W M, JIA H Q, HU S F, MA J H, LI R F. Promotion Effect of Surfactant AEO-3 on Synthesis of β Zeolites[J]. Chinese J. Inorg. Chem., 2020,36(10):1917-1924. doi: 10.11862/CJIC.2020.219 

    36. [36]

      Xu J Q, Chu W, Chen M H, Luo S Z, Zhang T. Hydrothermal Synthesis of V-MCM-41 Mesoporous Molecular Sieves and Synthesis Mechanism[J]. Chin. J. Catal., 2006,27(8):671-677.

    37. [37]

      ZHANG Q, XU J Q, GUO F, WANG Y Q. Effect of Crystallization Temperature on Mesoporous Structure, Morphology and Performance of V-MCM-41 Mesoporous Molecular Sieve[J]. Journal of the Chinese Ceramic Society, 2016,44(7):1064-1070.  

    38. [38]

      Wu T, Chen S L, Yuan G M, Pan X J, Du J N, Zhang Y T, Zhang N N. High Metal-Acid Balance and Selective Hydrogenation Activity Catalysts for Hydrocracking of 1-Methylnaphthalene to Benzene, Toluene, and Xylene[J]. Ind. Eng. Chem. Res., 2020,59(13):5546-5556. doi: 10.1021/acs.iecr.9b06158

    39. [39]

      Lee S, Lee Y, Kim J R, Jeong S Y. Tactical Control of Ni-Loading over W-Supported Beta Zeolite Catalyst for Selective Ring Opening of 1-Methylnaphthalene[J]. J. Ind. Eng. Chem., 2018,66:279-287. doi: 10.1016/j.jiec.2018.05.042

    40. [40]

      Li C Y, Sun P, Li F W. Hierarchical Zeolites-Confined Metal Catalysts and Their Enhanced Catalytic Performances[J]. Chem. Asian J., 2021,16(19):2795-2805. doi: 10.1002/asia.202100728

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

Metrics
  • PDF Downloads(3)
  • Abstract views(948)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return