Citation: Jing HUANG, Hui-Jun CHEN, Xiao-Miao FENG. Micromotors Based on Ni-Mn Binary Oxide and Its Application for Effective Dye Adsorption[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1411-1420. doi: 10.11862/CJIC.2022.145 shu

Micromotors Based on Ni-Mn Binary Oxide and Its Application for Effective Dye Adsorption

  • Corresponding author: Xiao-Miao FENG, iamxmfeng@njupt.edu.cn
  • Received Date: 19 January 2022
    Revised Date: 15 April 2022

Figures(8)

  • A kind of binary Ni-Mn oxide (Ni6MnO8) micromotors were prepared by hydrothermal method followed by high-temperature annealing. The obtained binary Ni-Mn oxides showed obvious needle-punched shapes and hollow structures that can be used as micromotors. These binary Ni-Mn oxide micromotors displayed powerful propulsion at a low fuel level (H2O2 mass fraction: 1%), with a speed of over 83.75 μm·s-1 and a long lifetime of up to 90 min. Even in an extremely low mass fraction of H2O2 (0.4%), the micromotors could also perform excellent autonomous locomotion. Due to the presence of Ni oxide, the micromotors could perform the directional movement by magnetic manipulation. Benefiting from excellent catalytic and magnetic properties, the obtained Ni6MnO8 micromotors could effectively remove methylene blue within 160 s by adsorption without secondary pollution.
  • 加载中
    1. [1]

      Tkaczyk A, Mitrowska K, Posyniak A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review[J]. Sci. Total Environ., 2020,717137222. doi: 10.1016/j.scitotenv.2020.137222

    2. [2]

      Dixit S, Yadav A, Dwivedi P D, Das M. Toxic Hazards of Leather Industry and Technologies to Combat Threat: A Review[J]. J. Clean. Prod., 2015,87:39-49. doi: 10.1016/j.jclepro.2014.10.017

    3. [3]

      Guerra E, Llompart M, Garcia-Jares C. Analysis of Dyes in Cosmetics: Challenges and Recent Developments[J]. Cosmetics, 2018,5(3):47-62. doi: 10.3390/cosmetics5030047

    4. [4]

      Li J, Ding X M, Liu D D, Guo F, Chen Y, Zhang Y B, Liu H M. Simultaneous Determination of Eight Illegal Dyes in Chili Products by Liquid Chromatography-Tandem Mass Spectrometry[J]. J. Chromatogr. B, 2013,942-943:46-52. doi: 10.1016/j.jchromb.2013.10.010

    5. [5]

      Susarla S M, Mulliken J B, Kaban L B, Manson P N, Dodson T B. The Colourful History of Malachite Green: From Ancient Egypt to Modern Surgery[J]. Int. J. Oral Maxillofac. Surg., 2017,46(3):401-403. doi: 10.1016/j.ijom.2016.09.022

    6. [6]

      Yusoff M S, Aziz H A, Zamri M F M A, Suja' F, Abdullah A Z, Basri N E A. Floc Behavior and Removal Mechanisms of Cross-Linked Durio Zibethinus Seed Starch as a Natural Flocculant for Landfill Leachate Coagulation-Flocculation Treatment[J]. Waste Manag., 2018,74:362-372. doi: 10.1016/j.wasman.2018.01.016

    7. [7]

      Ma J X, Dai R B, Chen M, Khan S J, Wang Z W. Applications of Membrane Bioreactors for Water Reclamation: Micropollutant Removal, Mechanisms and Perspectives[J]. Bioresour. Technol., 2018,269:532-543. doi: 10.1016/j.biortech.2018.08.121

    8. [8]

      Qu W Y, Yuan T, Yin G J, Xu S A, Zhang Q, Su H J. Effect of Properties of Activated Carbon on Malachite Green Adsorption[J]. Fuel, 2019,249:45-53. doi: 10.1016/j.fuel.2019.03.058

    9. [9]

      Shanker U, Rani M, Jassal V. Degradation of Hazardous Organic Dyes in Water by Nanomaterials[J]. Environ. Chem. Lett., 2017,15(4):623-642. doi: 10.1007/s10311-017-0650-2

    10. [10]

      Ismagilov R F, Schwartz A, Bowden N, Whitesides G M. Autonomous Movement and Self-Assembly[J]. Angew. Chem. Int. Ed., 2002,41(4):652-654. doi: 10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U

    11. [11]

      Paxton W F, Kistler K C, Olmeda C C, Sen A, St S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. Catalytic Nanomotors: Autonomous Movement of Striped Nanorods[J]. J. Am. Chem. Soc., 2004,126(41):13424-13431. doi: 10.1021/ja047697z

    12. [12]

      Gao S, Hou W J, Zeng J, Richardson J J, Gu Z, Gao X, Li D W, Wang D W, Chen P, Chen V, Liang K, Zhao D Y, Kong B. Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive PH-Speed Regulation at Ultralow Physiological H2O2 Concentration[J]. Adv. Funct. Mater., 2019,29(18)1808900. doi: 10.1002/adfm.201808900

    13. [13]

      He X, Buchel R, Figi R, Zhang Y C, Bahk Y, Ma J, Wang J. HighPerformance Carbon/MnO2 Micromotors and Their Applications for Pollutant Removal[J]. Chemosphere, 2019,219:427-435. doi: 10.1016/j.chemosphere.2018.12.051

    14. [14]

      Liu J, Li J, Wang G, Yang W N, Yang J, Liu Y. Bioinspired Zeolitic Imidazolate Framework (ZIF-8) Magnetic Micromotors for Highly Efficient Removal of Organic Pollutants from Water[J]. J. Colloid. Interface. Sci., 2019,555:234-244. doi: 10.1016/j.jcis.2019.07.059

    15. [15]

      Khalil I S M, Magdanz V, Sanchez S, Schmidt O G, Misra S. Precise Localization and Control of Catalytic Janus Micromotors Using Weak Magnetic Fields[J]. Int. J. Adv. Rob. Syst., 2015,121806530.

    16. [16]

      Moo J G S, Mayorga -Martinez C C, Wang H, Teo W Z, Tan B H, Luong T D, Gonzalez-Avila S R, Ohl C D, Pumera M. Bjerknes Forces in Motion: Long-Range Translational Motion and Chiral Directionality Switching in Bubble-Propelled Micromotors via an Ultrasonic Pathway[J]. Adv. Funct. Mater., 2018,28(25)1702618. doi: 10.1002/adfm.201702618

    17. [17]

      Liu L, Chen B, Liu K, Gao J B, Ye Y C, Wang Z, Qin N, Wilson D A, Tu Y F, Peng F. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-like Cell Stimulation[J]. Adv. Funct. Mater., 2020,30(11)1910108. doi: 10.1002/adfm.201910108

    18. [18]

      Zhang L L, Xiao Z Y, Chen X, Chen J Y, Wang W. Confined 1D Propulsion of Metallodielectric Janus Mmicromotors on Microelectrodes under Alternating Current Electric Fields[J]. ACS Nano, 2019,13(8):8842-8853. doi: 10.1021/acsnano.9b02100

    19. [19]

      Bastos-Arrieta J, Bauer C, Eychmuller A, Simmchen J. Galvanic Replacement Induced Electromotive Force to Propel Janus Micromotors[J]. J. Chem. Phys., 2019,150144902. doi: 10.1063/1.5085838

    20. [20]

      Wang X, Baraban L, Nguyen A, Ge J, Misko V R, Tempere J, Nori F, Formanek P, Huang T, Cuniberti G, Fassbender J, Makarov D. High-Motility Visible Light-Driven Ag/AgCl Janus Micromotors[J]. Small, 2018,14(18)e1803613.

    21. [21]

      Kong L, Mayorga-Martinez C C, Guan J G, Pumera M. Photocatalytic Micromotors Activated by UV to Visible Light for Environmental Remediation, Micropumps, Reversible Assembly, Transportation, and Biomimicry[J]. Small, 2020,16(27)e1903179. doi: 10.1002/smll.201903179

    22. [22]

      Palagi S, Singh D P, Fischer P. Light-Controlled Micromotors and Soft Microrobots[J]. Adv. Opt. Mater., 2019,7(16)e1900370. doi: 10.1002/adom.201900370

    23. [23]

      Liu Y, Lin G G, Bao G C, Guan M, Yang L, Liu Y T, Wang D J, Zhang X, Liao J Y, Fang G C, Di X J, Huang G, Zhou J J, Cheng Y Y, Jin D Y. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for In Vivo Imaging[J]. ACS Nano, 2021,15(12):19924-19937. doi: 10.1021/acsnano.1c07431

    24. [24]

      Soler L, Magdanz V, Fomin V M, Sanchez S, Schmidt O G. Self-Propelled Micromotors for Cleaning Polluted Water[J]. ACS Nano, 2013,7(11):9611-9620. doi: 10.1021/nn405075d

    25. [25]

      Orozco J, Cheng G, Vilela D, Sattayasamitsathit S, Vazquez-Duhalt R, Valdés-Ramírez G, Pak O S, Escarpa A, Kan C, Wang J. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats[J]. Angew. Chem. Int. Ed., 2013,52(50):13276-13279. doi: 10.1002/anie.201308072

    26. [26]

      Guix M, Orozco J, García M, Gao W, Sattayasamitsathit S, Merkoçi A, Escarpa A, Wang J. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil[J]. ACS Nano, 2012,6(5):4445-4451. doi: 10.1021/nn301175b

    27. [27]

      Jurado-Sánchez B, Wang J. Micromotors for Environmental Applications: A Review[J]. Environ. Sci.-Nano, 2018,5(7):1530-1544. doi: 10.1039/C8EN00299A

    28. [28]

      Jurado-Sánchez B, Sattayasamitsathit S, Gao W, Santos L, Fedorak Y, Singh V V, Orozco J, Galarnyk M, Wang J. Self-Propelled Activated Carbon Janus Micromotors for Efficient Water Purification[J]. Small, 2015,11(4):499-506. doi: 10.1002/smll.201402215

    29. [29]

      Orozco J, Mercante L, Pol R, Merkoçi A. Graphene-Based Janus Micromotors for the Dynamic Removal of Pollutants[J]. J. Mater. Chem. A, 2016,4(9):3371-3378. doi: 10.1039/C5TA09850E

    30. [30]

      Yang J, Liu Y, Li J, Zuo M, Li W Z, Xing N N, Wang C Y, Li T T. γ-FeO@Ag-mSiO2NH2 Magnetic Janus Micromotor for Active Water Remediation[J]. Appl. Mater. Today, 2021,25101190. doi: 10.1016/j.apmt.2021.101190

    31. [31]

      Apgar B A, Lee S, Schroeder L E, Martin L W. Enhanced Photoelectrochemical Activity in All-Oxide Heterojunction Devices Based on Correlated"Metallic"Oxides[J]. Adv. Mater., 2013,25(43):6201-6206. doi: 10.1002/adma.201303144

    32. [32]

      Alawi O A, Sidik N A C, Xian H, Kean T H, Kazi S N. Thermal Conductivity and Viscosity Models of Metallic Oxides Nanofluids[J]. Int. J. Heat Mass Transfer, 2018,116:1314-1325. doi: 10.1016/j.ijheatmasstransfer.2017.09.133

    33. [33]

      Xu X, Randorn C, Efstathiou P, Irvine J T S. A Red Metallic Oxide Photocatalyst[J]. Nat. Mater., 2012,11:595-598. doi: 10.1038/nmat3312

    34. [34]

      Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K, Nelson C T, Zhang Y, Su D, Folkman C M, Baek S H, Lee S, Janicka K, Zhu Y, Pan X Q, Fong D D, Tsymbal E Y, Rzchowski M S, Eom C B. Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations[J]. Science, 2011,331(6019):886-889. doi: 10.1126/science.1198781

    35. [35]

      Kundu D, Black R, Berg E J, Nazar L F. A Highly Active Nanostructured Metallic Oxide Cathode for Aprotic Li-O2 Batteries[J]. Energy Environ. Sci., 2015,8(4):1292-1298. doi: 10.1039/C4EE02587C

    36. [36]

      Safdar M, Wani O M, Jänis J. Manganese Oxide-Based Chemically Powered Micromotors[J]. ACS Appl. Mater. Interfaces, 2015,7(46):25580-22585. doi: 10.1021/acsami.5b08789

    37. [37]

      Villa K, Parmar J, Vilela D, Sanchez S. Metal-Oxide Based Microjets for the Simultaneous Removal of Organic Pollutants and Heavy Metals[J]. ACS Appl. Mater. Interfaces, 2018,10(24):20478-20486. doi: 10.1021/acsami.8b04353

    38. [38]

      Minh T D, Safdar M, Jänis J. Protection of Platinum Based Micromotors from Thiol Toxicity by Using Manganese Oxide[J]. Chem. Eur. J., 2017,23(34):8134-8136. doi: 10.1002/chem.201700788

    39. [39]

      Liu W J, Ge H B, Chen X, Lu X L, Gu Z W, Li J X, Wang J. Fish-Scales-like Intercalated Metal-Oxide-Based Micromotors as Efficient Water Remediation Agents[J]. ACS Appl. Mater. Interfaces, 2019,11(17):16164-16173. doi: 10.1021/acsami.9b01095

    40. [40]

      Peng X Y, Gao F, Zhao J X, Li J, Qu J Y, Fan H B. Self-Assembly of a Graphene Oxide/MnFe2O4 Motor by Coupling Shear Force with Capillarity for Removal of Toxic Heavy Metals[J]. J. Mater. Chem. A, 2018,6(24):20861-20868.

    41. [41]

      Wan H Z, Jiang J J, Ruan Y J, Yu J W, Zhang L, Chen H, Miao L, Bie S W. Direct Formation of Hedgehog-like Hollow Ni-Mn Oxides and Sulfides for Supercapacitor Electrodes[J]. Part. Part. Syst. Char., 2014,31(8):857-862. doi: 10.1002/ppsc.201400020

    42. [42]

      Ma W, Wang K, Pan S H, Wang H. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants[J]. Langmuir, 2020,36(25):6924-6929. doi: 10.1021/acs.langmuir.9b02137

    43. [43]

      Zhou H J, Wu B, Dekanovsky L, Wei S Y, Khezri B, Hartman T, Li J H, Sofer Z. Integration of BiOI Nanosheets into Bubble-Propelled Micromotors for Efficient Water Purification[J]. FlatChem, 2021,30100294. doi: 10.1016/j.flatc.2021.100294

    44. [44]

      Chen X, Ding X Y, Liu Y L, Li J, Liu W J, Lu X L, Gu Z W. Highly Efficient Visible-Light-Driven Cu2O@CdSe Micromotors Adsorbent[J]. Appl. Mater. Today, 2021,25101200. doi: 10.1016/j.apmt.2021.101200

    45. [45]

      Lin X Y, Zhu H, Zhao Z, You C Y, Kong Y, Zhao Y T, Liu J R, Chen H, Shi X J, Makarov D, Mei Y F. Hydrogel-Based Janus Micromotors Capped with Functional Nanoparticles for Environmental Applications[J]. Adv. Mater. Technol., 2020,5(8)2000279. doi: 10.1002/admt.202000279

    46. [46]

      Karmakar S, Mistari C D, Parey V, Thapa R, More M A, Behera D. Microporous Networks of NiMn2O4 as a Potent Cathode Material for Electric Field Emission[J]. J. Phys. D: Appl. Phys., 2019,53055103.

    47. [47]

      Huang Q S, Wei W, Sun J, Mao S, Ni B J. Hexagonal K2W4O13 Nanowires for the Adsorption of Methylene Blue[J]. ACS Appl. Nano Mater., 2019,2(6):3802-3812. doi: 10.1021/acsanm.9b00674

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    6. [6]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    7. [7]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    10. [10]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    11. [11]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    12. [12]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    13. [13]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    14. [14]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    15. [15]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    16. [16]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    17. [17]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    18. [18]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    19. [19]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    20. [20]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

Metrics
  • PDF Downloads(6)
  • Abstract views(587)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return