Effect of Different Spacers in Ionic Polymers on Catalytic CO2 Cycloaddition Reaction
- Corresponding author: Wei ZHONG, weizhong@mail.zjxu.edu.cn Ya-Bing HE, heyabing@zjnu.cn
Citation:
Li-Hua ZHU, Zhi-Yin XIAO, Wei ZHONG, Ya-Bing HE. Effect of Different Spacers in Ionic Polymers on Catalytic CO2 Cycloaddition Reaction[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(7): 1299-1308.
doi:
10.11862/CJIC.2022.144
Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2[J]. Top. Curr. Chem., 2017,375(3)50. doi: 10.1007/s41061-017-0136-5
Li Z J, Sun J F, Xu Q Q, Yin J Z. Homogeneous and Heterogeneous Ionic Liquid System: Promising "Ideal Catalysts" for the Fixation of CO2 into Cyclic Carbonates[J]. ChemCatChem, 2021,13(8):1848-1866. doi: 10.1002/cctc.202001572
Kamphuis A J, Picchioni F, Pescarmona P P. CO2-Fixation into Cyclic and Polymeric Carbonates: Principles and Applications[J]. Green Chem., 2019,21(3):406-448. doi: 10.1039/C8GC03086C
Kiatkittipong K, Shukri M, Kiatkittipong W, Lim J W, Show P L, Lam M K, Assabumrungrat S. Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide-A Mini Review[J]. Processes, 2020,8(5)548. doi: 10.3390/pr8050548
Bhanja P, Modak A, Bhaumik A. Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO2 Fixation Reactions[J]. Chem. Eur. J., 2018,24(29):7278-7297. doi: 10.1002/chem.201800075
Luo R C, Chen M, Liu X Y, Xu W, Li J Y, Liu B Y, Fang Y X. Recent Advances in CO2 Capture and Simultaneous Conversion into Cyclic Carbonates over Porous Organic Polymers Having Accessible Metal Sites[J]. J. Mater. Chem. A, 2020,8(36):18408-18424. doi: 10.1039/D0TA06142E
Luo R C, Liu X Y, Chen M, Liu B Y, Fang Y X. Recent Advances on Imidazolium-Functionalized Organic Cationic Polymers for CO2 Adsorption and Simultaneous Conversion into Cyclic Carbonates[J]. ChemSusChem, 2020,13(16):3945-3966. doi: 10.1002/cssc.202001079
Xu D, Guo J N, Yan F. Porous Ionic Polymers: Design, Synthesis, and Applications[J]. Prog. Polym. Sci., 2018,79:121-143. doi: 10.1016/j.progpolymsci.2017.11.005
Barrulas R V, Zanatta M, Casimiro T, Corvo M C. Advanced Porous Materials from Poly (ionic liquid) s: Challenges, Applications and Opportunities[J]. Chem. Eng. J., 2021,411128528. doi: 10.1016/j.cej.2021.128528
Guo F, Zhang X L. Metal-Organic Frameworks for the Energy-Related Conversion of CO2 into Cyclic Carbonates[J]. Dalton Trans., 2020,49(29):9935-9947. doi: 10.1039/D0DT01516D
Liang J, Huang Y B, Cao R. Metal-Organic Frameworks and Porous Organic Polymers for Sustainable Fixation of Carbon Dioxide into Cyclic Carbonates[J]. Coord. Chem. Rev., 2019,378:32-65. doi: 10.1016/j.ccr.2017.11.013
Maina J W, Pozo-Gonzalo C, Kong L X, Schutz J, Hill M, Dumee L F. Metal Organic Framework Based Catalysts for CO2 Conversion[J]. Mater. Horiz., 2017,4(3):345-361. doi: 10.1039/C6MH00484A
Pal T K, De D, Bharadwaj P K. Metal-Organic Frameworks for the Chemical Fixation of CO2 into Cyclic Carbonates[J]. Coord. Chem. Rev., 2020,408213173. doi: 10.1016/j.ccr.2019.213173
Marciniak A A, Lamb K J, Ozorio L P, Mota C J A, North M. Heterogeneous Catalysts for Cyclic Carbonate Synthesis from Carbon Dioxide and Epoxides[J]. Curr. Opin. Green Sustainable Chem., 2020,26100365. doi: 10.1016/j.cogsc.2020.100365
Calabrese C, Giacalone F, Aprile C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates[J]. Catalysts, 2019,9(4)325. doi: 10.3390/catal9040325
Yuan J Y, Mecerreyes D, Antonietti M. Poly (ionic liquid) s: An Update[J]. Prog. Polym. Sci., 2013,38(7):1009-1036. doi: 10.1016/j.progpolymsci.2013.04.002
Zhang S G, Dokko K, Watanabe M. Porous Ionic Liquids: Synthesis and Application[J]. Chem. Sci., 2015,6(7):3684-3691. doi: 10.1039/C5SC01374G
Bedel S, Ulrich G, Picard C. Alternative Approach to the Free Radical Bromination of Oligopyridine Benzylic-Methyl Group[J]. Tetrahedron Lett., 2002,43(9):1697-1700. doi: 10.1016/S0040-4039(02)00127-2
Carlsson H, Haukka M, Bousseksou A, Latour J M, Nordlander E. Nickel Complexes of Carboxylate-Containing Polydentate Ligands as Models for the Active Site of Urease[J]. Inorg. Chem., 2004,43(26)82528262.
Zhong W, Bobbink F D, Fei Z F, Dyson P J. Polyimidazolium Salts: Robust Catalysts for the Cycloaddition of Carbon Dioxide into Carbonates in Solvent-Free Conditions[J]. ChemSusChem, 2017,10(13):2728-2735. doi: 10.1002/cssc.201700570
Cai K X, Liu P, Chen P, Yang C L, Liu F, Xie T, Zhao T X. Imidazoliumand Triazine-Based Ionic Polymers as Recyclable Catalysts for Efficient Fixation of CO2 into Cyclic Carbonates[J]. J. CO2 Util., 2021,51101658. doi: 10.1016/j.jcou.2021.101658
Cao J J, Shan W J, Wang Q, Ling X C, Li G Q, Lyu Y, Zhou Y N, Wang J. Ordered Porous Poly (ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO2 Capture and Fixation[J]. ACS Appl. Mater. Interfaces, 2019,11(6):6031-6041. doi: 10.1021/acsami.8b19420
Zhou Y, Zhang W L, Ma L, Zhou Y, Wang J. Amino Acid Anion Paired Mesoporous Poly (ionic liquids) as Metal-/Halogen-Free Heterogeneous Catalysts for Carbon Dioxide Fixation[J]. ACS Sustainable Chem. Eng., 2019,7(10):9387-9398. doi: 10.1021/acssuschemeng.9b00591
Tang Y P, Yuwen S, Chung T S, Weber M, Staudt C, Maletzko C. Synthesis of Hyperbranched Polymers towards Efficient Boron Reclamation via a Hybrid Ultrafiltration Process[J]. J. Membr. Sci., 2016,510:112-121. doi: 10.1016/j.memsci.2016.03.024
Zhang Y D, Chen G J, Wu L, Liu K, Zhong H, Long Z Y, Tong M M, Yang Z Z, Dai S. Two-In-One: Construction of Hydroxyl and Imidazolium-Bifunctionalized Ionic Networks in One-Pot toward Synergistic Catalytic CO2 Fixation[J]. Chem. Commun., 2020,56(22):3309-3312. doi: 10.1039/C9CC09643D
Chen G J, Zhang Y D, Xu J Y, Liu X Q, Liu K, Tong M M, Long Z Y. Imidazolium-Based Ionic Porous Hybrid Polymers with POSSDerived Silanols for Efficient Heterogeneous Catalytic CO2 Conversion under Mild Conditions[J]. Chem. Eng. J., 2020,381122765. doi: 10.1016/j.cej.2019.122765
Gou H B, Ma X F, Su Q, Liu L, Ying T, Qian W, Dong L, Cheng W G. Hydrogen Bond Donor Functionalized Poly (ionic liquid) s for Efficient Synergistic Conversion of CO2 to Cyclic Carbonates[J]. Phys. Chem. Chem. Phys., 2021,23(3):2005-2014. doi: 10.1039/D0CP06041K
Jiang Y C, Wang Z J, Xu P, Sun J M. Dicationic Ionic Liquid@MIL101 for the Cycloaddition of CO2 and Epoxides under Cocatalyst-Free Conditions[J]. Cryst. Growth Des., 2021,21(7):3689-3698. doi: 10.1021/acs.cgd.0c01666
Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F. TaskSpecific Ionic Liquid Functionalized-MIL-101(Cr) as a Heterogeneous and Efficient Catalyst for the Cycloaddition of CO2 with Epoxides under Solvent Free Conditions[J]. ACS Sustainable Chem. Eng., 2019,7(4):3962-3973. doi: 10.1021/acssuschemeng.8b05226
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
Jiayin Hu , Yafei Guo , Long Li , Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
Wenjuan SHI , Yuke LU , Xiuyuan LI , Lei HOU , Yaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Yongxin LIU , Xingchen LI , Hongjia LIU , Danni LI , Tao ZHANG , Xi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092