Citation: Li-Hua ZHU, Zhi-Yin XIAO, Wei ZHONG, Ya-Bing HE. Effect of Different Spacers in Ionic Polymers on Catalytic CO2 Cycloaddition Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1299-1308. doi: 10.11862/CJIC.2022.144 shu

Effect of Different Spacers in Ionic Polymers on Catalytic CO2 Cycloaddition Reaction

Figures(12)

  • It is still a big challenge to efficiently catalyze cycloaddition of CO2 and epoxide under the mild condition of atmospheric pressure and low temperature. Herein, a family of novel ionic polymers IP1-IP3 has been facilely synthesized via nucleophilic substitution reaction between the precursors of N-trimethylsilyl imidazole and dihalides with different functional groups to form repeating C-N bonds. IP1-IP3 have been fully characterized by FT-IR, scanning electron microscope, X-ray energy dispersive spectrum mapping, specific surface area and porosity analyses, and X-ray photoelectron spectroscopy. The ionic polymers IP1-IP3 efficiently catalyzed the cycloaddition of CO2 and epoxides to afford cyclic carbonates at pCO2=101 kPa, but their catalytic activities varied with the spacers with different functional groups. Among the three ionic polymers, IP3 with a phenolic hydroxyl as the spacer showed the best catalytic performance. Under the optimized conditions of solvent-free, 80℃, 12 h, and pCO2=101 kPa, IP3 could quantitatively convert epichlorohydrin into its corresponding cyclic carbonate and showed broad substrate scope. Furthermore, IP3 could be recycled and reused 10 times without an obvious decrease in catalytic activity (Yield>92%), which indicates excellent stability.
  • 加载中
    1. [1]

      Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2[J]. Top. Curr. Chem., 2017,375(3)50. doi: 10.1007/s41061-017-0136-5

    2. [2]

      Li Z J, Sun J F, Xu Q Q, Yin J Z. Homogeneous and Heterogeneous Ionic Liquid System: Promising "Ideal Catalysts" for the Fixation of CO2 into Cyclic Carbonates[J]. ChemCatChem, 2021,13(8):1848-1866. doi: 10.1002/cctc.202001572

    3. [3]

      Kamphuis A J, Picchioni F, Pescarmona P P. CO2-Fixation into Cyclic and Polymeric Carbonates: Principles and Applications[J]. Green Chem., 2019,21(3):406-448. doi: 10.1039/C8GC03086C

    4. [4]

      Kiatkittipong K, Shukri M, Kiatkittipong W, Lim J W, Show P L, Lam M K, Assabumrungrat S. Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide-A Mini Review[J]. Processes, 2020,8(5)548. doi: 10.3390/pr8050548

    5. [5]

      Bhanja P, Modak A, Bhaumik A. Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO2 Fixation Reactions[J]. Chem. Eur. J., 2018,24(29):7278-7297. doi: 10.1002/chem.201800075

    6. [6]

      Luo R C, Chen M, Liu X Y, Xu W, Li J Y, Liu B Y, Fang Y X. Recent Advances in CO2 Capture and Simultaneous Conversion into Cyclic Carbonates over Porous Organic Polymers Having Accessible Metal Sites[J]. J. Mater. Chem. A, 2020,8(36):18408-18424. doi: 10.1039/D0TA06142E

    7. [7]

      Luo R C, Liu X Y, Chen M, Liu B Y, Fang Y X. Recent Advances on Imidazolium-Functionalized Organic Cationic Polymers for CO2 Adsorption and Simultaneous Conversion into Cyclic Carbonates[J]. ChemSusChem, 2020,13(16):3945-3966. doi: 10.1002/cssc.202001079

    8. [8]

      Xu D, Guo J N, Yan F. Porous Ionic Polymers: Design, Synthesis, and Applications[J]. Prog. Polym. Sci., 2018,79:121-143. doi: 10.1016/j.progpolymsci.2017.11.005

    9. [9]

      Barrulas R V, Zanatta M, Casimiro T, Corvo M C. Advanced Porous Materials from Poly (ionic liquid) s: Challenges, Applications and Opportunities[J]. Chem. Eng. J., 2021,411128528. doi: 10.1016/j.cej.2021.128528

    10. [10]

      Guo F, Zhang X L. Metal-Organic Frameworks for the Energy-Related Conversion of CO2 into Cyclic Carbonates[J]. Dalton Trans., 2020,49(29):9935-9947. doi: 10.1039/D0DT01516D

    11. [11]

      Liang J, Huang Y B, Cao R. Metal-Organic Frameworks and Porous Organic Polymers for Sustainable Fixation of Carbon Dioxide into Cyclic Carbonates[J]. Coord. Chem. Rev., 2019,378:32-65. doi: 10.1016/j.ccr.2017.11.013

    12. [12]

      Maina J W, Pozo-Gonzalo C, Kong L X, Schutz J, Hill M, Dumee L F. Metal Organic Framework Based Catalysts for CO2 Conversion[J]. Mater. Horiz., 2017,4(3):345-361. doi: 10.1039/C6MH00484A

    13. [13]

      Pal T K, De D, Bharadwaj P K. Metal-Organic Frameworks for the Chemical Fixation of CO2 into Cyclic Carbonates[J]. Coord. Chem. Rev., 2020,408213173. doi: 10.1016/j.ccr.2019.213173

    14. [14]

      Marciniak A A, Lamb K J, Ozorio L P, Mota C J A, North M. Heterogeneous Catalysts for Cyclic Carbonate Synthesis from Carbon Dioxide and Epoxides[J]. Curr. Opin. Green Sustainable Chem., 2020,26100365. doi: 10.1016/j.cogsc.2020.100365

    15. [15]

      Calabrese C, Giacalone F, Aprile C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates[J]. Catalysts, 2019,9(4)325. doi: 10.3390/catal9040325

    16. [16]

      Yuan J Y, Mecerreyes D, Antonietti M. Poly (ionic liquid) s: An Update[J]. Prog. Polym. Sci., 2013,38(7):1009-1036. doi: 10.1016/j.progpolymsci.2013.04.002

    17. [17]

      Zhang S G, Dokko K, Watanabe M. Porous Ionic Liquids: Synthesis and Application[J]. Chem. Sci., 2015,6(7):3684-3691. doi: 10.1039/C5SC01374G

    18. [18]

      Bedel S, Ulrich G, Picard C. Alternative Approach to the Free Radical Bromination of Oligopyridine Benzylic-Methyl Group[J]. Tetrahedron Lett., 2002,43(9):1697-1700. doi: 10.1016/S0040-4039(02)00127-2

    19. [19]

      Carlsson H, Haukka M, Bousseksou A, Latour J M, Nordlander E. Nickel Complexes of Carboxylate-Containing Polydentate Ligands as Models for the Active Site of Urease[J]. Inorg. Chem., 2004,43(26)82528262.

    20. [20]

      Zhong W, Bobbink F D, Fei Z F, Dyson P J. Polyimidazolium Salts: Robust Catalysts for the Cycloaddition of Carbon Dioxide into Carbonates in Solvent-Free Conditions[J]. ChemSusChem, 2017,10(13):2728-2735. doi: 10.1002/cssc.201700570

    21. [21]

      Cai K X, Liu P, Chen P, Yang C L, Liu F, Xie T, Zhao T X. Imidazoliumand Triazine-Based Ionic Polymers as Recyclable Catalysts for Efficient Fixation of CO2 into Cyclic Carbonates[J]. J. CO2 Util., 2021,51101658. doi: 10.1016/j.jcou.2021.101658

    22. [22]

      Cao J J, Shan W J, Wang Q, Ling X C, Li G Q, Lyu Y, Zhou Y N, Wang J. Ordered Porous Poly (ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO2 Capture and Fixation[J]. ACS Appl. Mater. Interfaces, 2019,11(6):6031-6041. doi: 10.1021/acsami.8b19420

    23. [23]

      Zhou Y, Zhang W L, Ma L, Zhou Y, Wang J. Amino Acid Anion Paired Mesoporous Poly (ionic liquids) as Metal-/Halogen-Free Heterogeneous Catalysts for Carbon Dioxide Fixation[J]. ACS Sustainable Chem. Eng., 2019,7(10):9387-9398. doi: 10.1021/acssuschemeng.9b00591

    24. [24]

      Tang Y P, Yuwen S, Chung T S, Weber M, Staudt C, Maletzko C. Synthesis of Hyperbranched Polymers towards Efficient Boron Reclamation via a Hybrid Ultrafiltration Process[J]. J. Membr. Sci., 2016,510:112-121. doi: 10.1016/j.memsci.2016.03.024

    25. [25]

      Zhang Y D, Chen G J, Wu L, Liu K, Zhong H, Long Z Y, Tong M M, Yang Z Z, Dai S. Two-In-One: Construction of Hydroxyl and Imidazolium-Bifunctionalized Ionic Networks in One-Pot toward Synergistic Catalytic CO2 Fixation[J]. Chem. Commun., 2020,56(22):3309-3312. doi: 10.1039/C9CC09643D

    26. [26]

      Chen G J, Zhang Y D, Xu J Y, Liu X Q, Liu K, Tong M M, Long Z Y. Imidazolium-Based Ionic Porous Hybrid Polymers with POSSDerived Silanols for Efficient Heterogeneous Catalytic CO2 Conversion under Mild Conditions[J]. Chem. Eng. J., 2020,381122765. doi: 10.1016/j.cej.2019.122765

    27. [27]

      Gou H B, Ma X F, Su Q, Liu L, Ying T, Qian W, Dong L, Cheng W G. Hydrogen Bond Donor Functionalized Poly (ionic liquid) s for Efficient Synergistic Conversion of CO2 to Cyclic Carbonates[J]. Phys. Chem. Chem. Phys., 2021,23(3):2005-2014. doi: 10.1039/D0CP06041K

    28. [28]

      Jiang Y C, Wang Z J, Xu P, Sun J M. Dicationic Ionic Liquid@MIL101 for the Cycloaddition of CO2 and Epoxides under Cocatalyst-Free Conditions[J]. Cryst. Growth Des., 2021,21(7):3689-3698. doi: 10.1021/acs.cgd.0c01666

    29. [29]

      Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F. TaskSpecific Ionic Liquid Functionalized-MIL-101(Cr) as a Heterogeneous and Efficient Catalyst for the Cycloaddition of CO2 with Epoxides under Solvent Free Conditions[J]. ACS Sustainable Chem. Eng., 2019,7(4):3962-3973. doi: 10.1021/acssuschemeng.8b05226

  • 加载中
    1. [1]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    4. [4]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    5. [5]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    6. [6]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    7. [7]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    10. [10]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    13. [13]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    16. [16]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(2)
  • Abstract views(1683)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return