Citation: Xiao-Juan CHEN, Hong-Ren RONG, Li-Li YU, Mei-Ling CHENG, Guang-Chi SUN, Qi LIU. A Cadmium-Based Coordination Polymer Including No Solvent as an Anode Material for Li-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1367-1374. doi: 10.11862/CJIC.2022.140 shu

A Cadmium-Based Coordination Polymer Including No Solvent as an Anode Material for Li-Ion Batteries

  • Corresponding author: Qi LIU, liuqi62@163.com
  • Received Date: 18 February 2022
    Revised Date: 6 April 2022

Figures(4)

  • For developing lithium-ion batteries (LIBs) with higher energy density, coordination polymers (CPs), as the electrode materials for LIBs, have attracted considerable attention from researchers. Herein, [Cd(tfbdc) (Im)4] (Cd-TBI), a one-dimensional (1D) CP, was synthesized by the reaction of CdCl2, imidazole (Im), and tetrafluoroterephthalic acid (H2tfbdc), and characterized by single-crystal X-ray diffraction, IR spectrum, and thermogravimetric analysis. In Cd-TBI, tfbdc2- anions bridged Cd(Ⅱ) ions to form a 1D chain structure. These 1D chains are linked to each other by the hydrogen bonds to produce a 3D supramolecular framework. The electrochemical performances of Cd-TBI as an anode material of LIBs were investigated for the first time. Cd-TBI electrode delivered the discharge capacity of 150 mAh·g-1 at 50 mA·g-1 after 50 cycles, along with the capacity retention of 95.7% and Coulombic efficiency of 99.2%, indicating it has excellent cycling stability. Even at 1 A·g-1, the Cd-TBI electrode also kept the discharge capacity of 97 mAh·g-1.
  • 加载中
    1. [1]

      Goodenough J B. Electrochemical Energy Storage in a Sustainable Modern Society[J]. Energy Environ. Sci., 2014,7(1):14-18. doi: 10.1039/C3EE42613K

    2. [2]

      Whittingham M S. Ultimate Limits to Intercalation Reactions for Lithium Batteries[J]. Chem. Rev., 2014,114(23):11414-11443. doi: 10.1021/cr5003003

    3. [3]

      Zhou L K, Kong X H, Gao M, Lian F, Li B J, Zhou Z F, Cao H Q. Hydrothermal Fabrication of MnCO3@rGO Composite as an Anode Material for High-Performance Lithium Ion Batteries[J]. Inorg. Chem., 2014,53(17):9228-9234. doi: 10.1021/ic501321z

    4. [4]

      ZHANG J Y, LIU H H, SHI X X. Preparation of i2Ni2(MoO4)3@C Composite as High-Performance Anode Material for Lithium-Ion Batteries with High Initial Coulombic Efficiency[J]. Chinese J. Inorg. Chem., 2021,37(10):1862-1870. doi: 10.11862/CJIC.2021.205 

    5. [5]

      Obrovac M N, Chevrier V L. Alloy Negative Electrodes for Li-Ion Batteries[J]. Chem. Rev., 2014,114(23):11444-11502. doi: 10.1021/cr500207g

    6. [6]

      Reddy M V, Subba R G V, Chowdari B V R. Metal Oxides and Oxysalts as Anode Materials for Li-Ion Batteries[J]. Chem. Rev., 2013,113(7):5364-5457. doi: 10.1021/cr3001884

    7. [7]

      Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon J M. Conjugated Dicarboxylate Anodes for Li-Ion Batteries[J]. Nat. Mater., 2009,8(2):120-125. doi: 10.1038/nmat2372

    8. [8]

      ZHANG L, WANG J, TANG Y P, GUO Y Z, HUANG R A. Preparation and Li+-Storage Behaviour of Ordered Mesoporous Si/C Composite Structure[J]. Chinese J. Inorg. Chem., 2020,36(5):893-900.  

    9. [9]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    10. [10]

      Su J, Hu T H, Murase R, Wang H Y, D'Alessandro D M, Kurmoo M, Zuo J L. Redox Activities of Metal-Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers[J]. Inorg. Chem., 2019,58(6):3698-3706. doi: 10.1021/acs.inorgchem.8b03299

    11. [11]

      Zhang X Y, Xie C F, Wang S Q, Cheng X M, Zhang Y, Zhao Y, Lu Y, Sun W Y. Coordination Polymers with 2, 2': 6', 2″-Terpyridine Earth-Abundant Metal Complex Units for Selective CO2 Photoreduction[J]. Inorg. Chem., 2022,61(3):1590-1596. doi: 10.1021/acs.inorgchem.1c03348

    12. [12]

      Zhou Y, Hu Q, Yu F, Ran G Y, Wang H Y, Shepherd N D, D'Alessandro D M, Kurmoo M, Zuo J L. A Metal-Organic Framework Based on a Nickel Bis (dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor[J]. J. Am. Chem. Soc., 2020,142(48):20313-20317. doi: 10.1021/jacs.0c09009

    13. [13]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material[J]. ACS Appl. Mater. Interfaces, 2016,8(7):4585-4591. doi: 10.1021/acsami.5b10781

    14. [14]

      WEN H, SHI C D, HU Y, RONG H R, SHA Y Y, LIU H J, ZHANG H P, LIU Q. 2D Coordination Polymer Derived Nitrogen-Doped Carbon/ZnO Nanocomposites as High Performance Anode Material of Lithium-Ion Batteries[J]. Chinese J. Inorg. Chem., 2019,35(1):50-58.  

    15. [15]

      Zheng S S, Li X R, Yan B Y, Hu Q, Xu Y X, Xiao X, Xue H G, Pang H. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv. Energy Mater., 2017,7(18)1602733. doi: 10.1002/aenm.201602733

    16. [16]

      Wang L, Han Y Z, Feng X, Zhou J W, Qi P F, Wang B. Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors[J]. Coord. Chem. Rev., 2016,307:361-381. doi: 10.1016/j.ccr.2015.09.002

    17. [17]

      Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Pristine Metal-Organic Frameworks and Their Composites for Energy Storage and Conversion[J]. Adv. Mater., 2018,30(37)1702891. doi: 10.1002/adma.201702891

    18. [18]

      Yang X Y, Li M T, Sheng N, Li J S, Liu G D, Sha J Q, Jiang J Z. Structure and LIBs Anode Material Application of Novel Wells-Dawson Polyoxometalate-Based Metal Organic Frameworks with Different Helical Channels[J]. Cryst. Growth Des., 2018,18(9):5564-5572. doi: 10.1021/acs.cgd.8b00862

    19. [19]

      Sha J Q, Li X, Li J S, Yang X Y, Zhang H F, Yue M B, Zhou K F. Acidity Considerations in the Self-Assembly of POM/Ag/Trz-Based Compounds with Efficient Electrochemical Activities in LIBs[J]. Cryst. Growth Des., 2018,18(4):2289-2296. doi: 10.1021/acs.cgd.7b01730

    20. [20]

      Li X X, Cheng F Y, Zhang S N, Chen J. Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O (1, 3, 5-Benzenetribenzoate)2[J]. J. Power Sources, 2006,160(1):542-547. doi: 10.1016/j.jpowsour.2006.01.015

    21. [21]

      Férey G, Millange F, Morcrette M, Serre C, Doublet M L, Grenèche J M, Tarascon J M. Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Properties[J]. Angew. Chem. Int. Ed., 2007,46(18):3259-3263. doi: 10.1002/anie.200605163

    22. [22]

      Xiang J F, Chang C X, Li M, Wu S M, Yuan L J, Sun J T. A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery[J]. Cryst. Growth Des., 2008,8(1):280-282. doi: 10.1021/cg070386q

    23. [23]

      Saravanan K, Nagarathinam M, Balaya P, Vittal J J. Lithium Storage in a Metal Organic Framework with Diamondoid Topology-A Case Study on Metal Formats[J]. J. Mater. Chem., 2010,20(38):8329-8335. doi: 10.1039/c0jm01671c

    24. [24]

      Mao Y, Kong Q Y, Guo B K, Fang X P, Guo X W, Shen L, Armand M, Wang Z X, Chen L Q. Polypyrrole-Iron-Oxygen Coordination Complex as High Performance Lithium Storage Material[J]. Energy Environ. Sci., 2011,4(9):3442-3447. doi: 10.1039/c1ee01275d

    25. [25]

      Nagarathinam M, Saravanan K, Phua E J H, Reddy M V, Chowdari B V, Vittal J J. Redox-Active Metal-Centered Oxalato Phosphate Open Framework Cathode Materials for Lithium Ion Batteries[J]. Angew. Chem. Int. Ed., 2012,51(24):5866-5870. doi: 10.1002/anie.201200210

    26. [26]

      Liu Q, Yu L L, Wang Y, Ji Y Z, Horvat J, Cheng M L, Jia X Y, Wang G X. Manganese-Based Layered Coordination Polymer: Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries[J]. Inorg. Chem., 2013,52(6):2817-2822. doi: 10.1021/ic301579g

    27. [27]

      Zhang Z Y, Yoshikawa H F, Awaga K. Monitoring the Solid-State Electrochemistry of Cu (2, 7-AQDC)(AQDC=Anthraquinone Dicarboxylate) in a Lithium Battery: Coexistence of Metal and Ligand Redox Activities in a Metal-Organic Framework[J]. J. Am. Chem. Soc., 2014,136(46):16112-16115. doi: 10.1021/ja508197w

    28. [28]

      Gou L, Hao L M, Shi Y X, Ma S L, Fan X Y, Xu L, Li D L, Wang K. One-Pot Synthesis of a Metal-Organic Framework as an Anode for Li-Ion Batteries with Improved Capacity and Cycling Stability[J]. J. Solid State Chem., 2014,210(1):121-124. doi: 10.1016/j.jssc.2013.11.014

    29. [29]

      Fei H L, Liu X, Li Z W, Feng W J. Metal Dicarboxylates: New Anode Materials for Lithium-Ion Batteries with Good Cycling Performance[J]. Dalton Trans., 2015,44(21):9909-9914. doi: 10.1039/C5DT00500K

    30. [30]

      An T, Wang Y H, Tang J, Wang Y, Zhang L J, Zheng G F. A Flexible Ligand-Based Wavy Layered Metal-Organic Framework for Lithium-Ion Storage[J]. J. Colloid Interface Sci., 2015,445:320-325. doi: 10.1016/j.jcis.2015.01.012

    31. [31]

      Lin Y C, Zhang Q J, Zhao C C, Li H L, Kong C L, Shen C, Chen L. An Exceptionally Stable Functionalized Metal-Organic Framework for Lithium Storage[J]. Chem. Commun., 2015,51(4):697-699. doi: 10.1039/C4CC07149B

    32. [32]

      Maiti S, Pramanik A, Manju U, Mahanty S. Reversible Lithium Storage in Manganese 1, 3, 5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance[J]. ACS Appl. Mater. Interfaces, 2015,7(30):16357-16363. doi: 10.1021/acsami.5b03414

    33. [33]

      Kaveevivitchai W, Jacobson A J. Exploration of Vanadium Benzenedicarboxylate as a Cathode for Rechargeable Lithium Batteries[J]. J. Power Sources, 2015,278:265-273. doi: 10.1016/j.jpowsour.2014.12.094

    34. [34]

      Zhao C C, Shen C, Han W Q. Metal-Organic Nanofibers as Anodes for Lithium-Ion Batteries[J]. RSC Adv., 2015,5(26):20386-20389. doi: 10.1039/C4RA16416D

    35. [35]

      Li C, Hu X S, Lou X B, Chen Q, Hu B W. Bimetallic Coordination Polymer as a Promising Anode Material for Lithium-Ion Batteries[J]. Chem. Commun., 2016,52(10):2035-2038. doi: 10.1039/C5CC07151H

    36. [36]

      Shi C D, Xia Q H, Xue X, Liu Q, Liu H J. Synthesis of Cobalt-Based Layered Coordination Polymer Nanosheets and Their Application in Lithium-Ion Batteries as Anode Materials[J]. RSC Adv., 2016,6(6):4442-4447. doi: 10.1039/C5RA22038F

    37. [37]

      Li G H, Yang H, Li F C, Cheng F Y, Shi W, Chen J, Cheng P. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal-organic Material[J]. Inorg. Chem., 2016,55(10):4935-4940. doi: 10.1021/acs.inorgchem.6b00450

    38. [38]

      Shi C D, Wang X M, Gao Y R, Rong H R, Song Y D, Liu H J, Liu Q. Nickel Metal-Organic Framework Nanoparticles as Electrode Materials for Li-Ion Batteries and Supercapacitors[J]. J. Solid State Electrochem., 2017,21(8):2415-2423. doi: 10.1007/s10008-017-3591-6

    39. [39]

      Tian D, Xu J, Xie Z J, Yao Z Q, Fu D L, Zhou Z, Bu X H. The First Example of Hetero-Triple-Walled Metal-Organic Frameworks with High Chemical Stability Constructed via Flexible Integration of Mixed Molecular Building Blocks[J]. Adv. Sci., 2016,3(10)1500283. doi: 10.1002/advs.201500283

    40. [40]

      Song Y D, Yu L L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. One-Dimensional Zinc-Based Coordination Polymer as a Higher Capacity Anode Material for Lithium Ion Batteries[J]. Inorg. Chem., 2017,56(19):11603-11609. doi: 10.1021/acs.inorgchem.7b01441

    41. [41]

      Sha Y Y, Shi C D, Gao Y R, Wen H, Rong H R, Liu H J, Liu Q. Cadmium-Based Coordination Polymer Nanorods and Microblocks as Anode Materials for Lithium-Ion Batteries[J]. Int. J. Electrochem. Sci., 2019,14(2):1658-1669.

    42. [42]

      Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. Ultrathin Manganese-Based Metal-Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities[J]. ACS Appl. Mater. Interfaces, 2017,9(35):29829-29838. doi: 10.1021/acsami.7b09363

    43. [43]

      Hu L, Lin X M, Mo J T, Lin J, Gan H L, Yang X L, Cai Y P. Lead-Based Metal-Organic Framework with Stable Lithium Anodic Performance[J]. Inorg. Chem., 2017,56(8):4289-4295. doi: 10.1021/acs.inorgchem.6b02663

    44. [44]

      Wang Y, Qu Q T, Liu G, Battaglia V S, Zheng H H. Aluminum Fumarate-Based Metal Organic Frameworks with Tremella-like Structure as Ultrafast and Stable Anode for Lithium-Ion Batteries[J]. Nano Energy, 2017,39:200-210. doi: 10.1016/j.nanoen.2017.06.007

    45. [45]

      Shen L S, Song H W, Wang C X. Metal-Organic Frameworks Triggered High-Efficiency Li Storage in Fe-Based Polyhedral Nanorods for Lithium-Ion Batteries[J]. Electrochim. Acta, 2017,235:595-603. doi: 10.1016/j.electacta.2017.03.105

    46. [46]

      Lou X B, Ning Y Q, Li C, Shen M, Hu B, Hu X S, Hu B W. Exploring the Capacity Limit: A Layered Hexacarboxylate-Based Metal-Organic Framework for Advanced Lithium Storage[J]. Inorg. Chem., 2018,57(6):3126-3132. doi: 10.1021/acs.inorgchem.7b02939

    47. [47]

      Gan Q M, He H N, Zhao K M, He Z, Liu S Q. Morphology-Dependent Electrochemical Performance of Ni1, 3, 5-Benzenetricarboxylate Metal-Organic Frameworks as an Anode Material for Li-Ion Batteries[J]. J. Colloid Interface Sci., 2018,530:127-136. doi: 10.1016/j.jcis.2018.06.057

    48. [48]

      Lee H H, Park Y, Kim S H, Yeon S H, Kwak S K, Lee K T, Hong S Y. Mechanistic Studies of Transition Metal-Terephthalate Coordination Complexes Upon Electrochemical Lithiation and Delithiation[J]. Adv. Funct. Mater., 2015,25(30):4859-4866. doi: 10.1002/adfm.201501436

    49. [49]

      Fei H L, Feng W J, Xu T. Zinc Naphthalenedicarboxylate Coordination Complex: A Promising Anode Material for Lithium and Sodium-Ion Batteries with Good Cycling Stability[J]. J. Colloid Interface Sci., 2017,488:277-281. doi: 10.1016/j.jcis.2016.11.010

    50. [50]

      Gong T, Lou X B, Gao E Q, Hu B W. Pillared-Layer Metal-Organic Frameworks for Improved Lithium-Ion Storage Performance[J]. ACS Appl. Mater. Interfaces, 2017,9(26):21839-21847. doi: 10.1021/acsami.7b05889

    51. [51]

      Zhang L, Cheng F Y, Shi W, Chen J, Cheng P. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials[J]. ACS Appl. Mater. Interfaces, 2018,10(7):6398-6406. doi: 10.1021/acsami.7b18758

    52. [52]

      Sun G C, Yu L L, Hu Y, Sha Y Y, Rong H R, Li B L, Liu H J, Liu Q. A Manganese-Based Coordination Polymer Containing No Solvent as a High Performance Anode in Li-Ion Batteries[J]. Cryst. Growth Des., 2019,19(11):6503-6510. doi: 10.1021/acs.cgd.9b00962

    53. [53]

      Su H Q, Song Y D, Hu Y, Ma Y W, Liu W L, Liu H J, Liu Q. A Copper-Based Polycarbonyl Coordination Polymer as a Cathode for Li Ion Batteries[J]. Cryst. Growth Des., 2021,21(7):3668-3676. doi: 10.1021/acs.cgd.0c01578

    54. [54]

      Song Z P, Qian Y M, Gordin M L, Tang D H, Xu T, Otani M, Zhan H, Zhou H S, Wang D H. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage[J]. Angew. Chem. Int. Ed., 2015,54(47):13947-13951. doi: 10.1002/anie.201506673

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    14. [14]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    15. [15]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    18. [18]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return