Citation: Yue-Ying YAN, Yue LI, Jie DENG, Xi ZHAO, Na TA, Yong-Dong CHEN. Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1402-1410. doi: 10.11862/CJIC.2022.139 shu

Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst

Figures(10)

  • In this paper, Ce1-xMgxO2 (x=0.05, 0.10, 0.15, 0.20) solid solution catalytic materials with different molar ratios were successfully synthesized by co-precipitation method. These materials were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption test, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), CO2 temperature-programmed desorption (CO2-TPD) and other techniques. It was found that the particle size, specific surface area, surface defects, etc. of the prepared Ce1-xMgxO2 catalytic materials can be tuned by regulating the content of Mg in the CeO2 lattice. Among them, Ce0.90Mg0.10O2 exhibited the best surface properties, with the smallest average particle size of about 5.8 nm, the largest specific surface area of about 136 m2·g-1, and the highest surface oxygen content (31.98%). Ce1-xMgxO2 catalytic material was coated on the cordierite honeycomb ceramic to make a monolithic catalyst, and its catalytic performance for the direct synthesis of dimethyl carbonate from CO2 and CH3OH was investigated. Under the conditions of 140℃, 2.4 MPa, and 2 h reaction, the yield of dimethyl carbonate on Ce0.90Mg0.10O2 monolith catalyst was as high as 20.21%, and the catalytic activity was significantly higher than that of CeO2 and other Ce1-xMgxO2 (x=0.05, 0.15, 0.20) catalytic materials.
  • 加载中
    1. [1]

      Schifter I, Gonzalez U, Gonzalez-Macias C. Effects of Ethanol, Ethyl-tert-butyl Ether and Dimethyl Carbonate Blends with Gasoline on SI engine[J]. Fuel, 2016,183:253-261. doi: 10.1016/j.fuel.2016.06.051

    2. [2]

      Tundo P, Musolino M, Aricò F. The Reactions of Dimethyl Carbonate and Its Derivatives[J]. Green Chem., 2018,20:28-85. doi: 10.1039/C7GC01764B

    3. [3]

      Selva M, Perosa A, Fiorani G. Dimethyl Carbonate: A Versatile Reagent for a Sustainable Valorization of Renewables[J]. Green Chem., 2018,20:288-322. doi: 10.1039/C7GC02118F

    4. [4]

      Keller N, Rebmann G, Keller V. Catalysts, Mechanisms and Industrial Processes for the Dimethyl Carbonate Synthesis[J]. J. Mol. Catal. A: Chem., 2010,317:1-18. doi: 10.1016/j.molcata.2009.10.027

    5. [5]

      Saavalainen P, Kabra S, Turpeinen E, Oravisjärvi K, Yadav G D, Keiski R L, Pongrácz E. Sustainability Assessment of Chemical Processes: Evaluation of Three Synthesis Routes of DMC[J]. J. Chem., 2015:1-12.

    6. [6]

      Tamboli A H, Chaugule A A, Kim H. Catalytic Developments in the Direct Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol[J]. Chem. Eng. J., 2017,323:530-544. doi: 10.1016/j.cej.2017.04.112

    7. [7]

      Dabral S, Schaub T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective[J]. Adv. Synth. Catal., 2019,361:223-246. doi: 10.1002/adsc.201801215

    8. [8]

      Cai Q H, Lu B, Guo L J, Shan Y K. Studies on Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide[J]. Catal. Commun., 2009,10:605-609. doi: 10.1016/j.catcom.2008.11.002

    9. [9]

      Liu B, Li C M, Zhang G Q, Yan L F, Li Z. Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol over CaO-CeO2 Catalysts: The Role of Acidic-Basic Properties and Surface Oxygen Vacancies[J]. New J. Chem., 2017,41:12231-12240. doi: 10.1039/C7NJ02606D

    10. [10]

      Marciniaka A A, Henriqueb F J F S, Limac A F F, Alvesd O C, Moreirae C R, Appele L G, Mota C J A. What are the Preferred CeO2 Exposed Planes for the Synthesis of Dimethyl Carbonate? Answers from Theory and Experiments[J]. Mol. Catal., 2020,493111053. doi: 10.1016/j.mcat.2020.111053

    11. [11]

      Fu Z W, Yu Y H, Li Z, Han D M, Wang S J, Xiao M, Meng Y Z. Surface Reduced CeO2 Nanowires for Direct Conversion of CO2 and Methanol to Dimethyl Carbonate: Catalytic Performance and Role of Oxygen Vacancy[J]. Catalysts, 2018,8164. doi: 10.3390/catal8040164

    12. [12]

      Zhao S Y, Wang S P, Zhao Y J, Ma X B. An In Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Well-Shaped CeO2[J]. Chin. Chem. Lett., 2017,28:65-69. doi: 10.1016/j.cclet.2016.06.003

    13. [13]

      Tamboli A H, Chaugule A A, Gosavi S W, Kim H. CexZr1-xO2 Solid Solutions for Catalytic Synthesis of Dimethyl Carbonate from CO2: Reaction Mechanism and the Effect of Catalyst Morphology on Catalytic Activity[J]. Fuel, 2018,216:245-254. doi: 10.1016/j.fuel.2017.12.008

    14. [14]

      Fu Z W, Zhong Y Y, Yu Y H, Long L Z, Xiao M, Han D M, Wang S J, Meng Y Z. TiO2-Doped CeO2 Nanorod Catalyst for Direct Conversion of CO2 and CH3OH to Dimethyl Carbonate: Catalytic Performance and Kinetic Study[J]. ACS Omega, 2018,3:198-207. doi: 10.1021/acsomega.7b01475

    15. [15]

      Yu Q, Wu X X, Tang C J, Qi L, Liu B, Gao F, Sun K Q, Dong L, Chen Y. Textural, Structural, and Morphological Characterizations and Catalytic Activity of Nanosized CeO2-MOx (M=Mg2+, Al3+, Si4+) Mixed Oxides for CO Oxidation[J]. J. Colloid Interface Sci., 2011,354:341-352. doi: 10.1016/j.jcis.2010.10.043

    16. [16]

      Kang K H, Joe W, Lee C H, Kim M, Kim D B, Jang B, Song I K. Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over CeO2(X)-ZnO (1-X) Nano-Catalysts[J]. J. Nanosci. Nanotechnol., 2013,13:8116-8120. doi: 10.1166/jnn.2013.8177

    17. [17]

      Sakakura T, Choi J, Saito Y, Sako T. Synthesis of Dimethyl Carbonate from Carbon Dioxide: Catalysis and Mechanism[J]. Polyhedron, 2000,19:573-576. doi: 10.1016/S0277-5387(99)00411-8

    18. [18]

      Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K. Organic Carbonate Synthesis from CO2 and Alcohol over CeO2 with 2-Cyanopyridine: Scope and Mechanistic Studies[J]. J. Catal., 2014,318:95-107. doi: 10.1016/j.jcat.2014.07.022

    19. [19]

      Stoian D, Medina F, Urakawa A. Improving the Stability of CeO2 Catalyst by Rare Earth Metal Promotion and Molecular Insights in the Dimethyl Carbonate Synthesis from CO2 and Methanol with 2-Cyanopyridine[J]. ACS Catal., 2018,8:3181-3225. doi: 10.1021/acscatal.7b04198

    20. [20]

      Wang S P, Zhou J J, Zhao S Y, Zhao Y J, Ma X B. Enhancements of Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide: The In Situ Hydrolysis of 2-Cyanopyridine and Crystal Face Effect of Ceria[J]. Chin. Chem. Lett., 2015,26:1096-1100. doi: 10.1016/j.cclet.2015.05.005

    21. [21]

      Sakakura T, Saito Y, Okano M, Choi J C, Sako T. Selective Conversion of Carbon Dioxide to Dimethyl Carbonate by Molecular Catalysis[J]. J. Org. Chem., 1998,63:7095-7096. doi: 10.1021/jo980460z

    22. [22]

      Marciniak A A, Alves O C, Appel L G, Mota C J A. Synthesis of Dimethyl Carbonate from CO2 and Methanol over CeO2: Role of Copper as Dopant and the Use of Methyl Trichloroacetate as Dehydrating Agent[J]. J. Catal., 2019,371:88-95. doi: 10.1016/j.jcat.2019.01.035

    23. [23]

      Bansode A, Urakawa A. Continuous DMC Synthesis from CO2 and Methanol over a CeO2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent[J]. ACS Catal., 2014,4:3877-3880. doi: 10.1021/cs501221q

    24. [24]

      Han D M, Chen Y, Wang S J, Xiao M, Lu Y X, Meng Y Z. Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate[J]. Catalysts, 2018,8:302-312. doi: 10.3390/catal8080302

    25. [25]

      Santos B, Silva V, Loureiro J, Rodrigues A E. Adsorption of H2O and Dimethyl Carbonate at High Pressure over Zeolite 3A in Fixed Bed Column[J]. Ind. Eng. Chem. Res., 2014,53:2473-2483. doi: 10.1021/ie403830r

    26. [26]

      Chen Y D, Yang Y, Tian S L, Ye Z B, Li G. Highly Effective Synthesis of Dimethyl Carbonate over CuNi Alloy Nanoparticles@Porous Organic Polymers Composite[J]. Appl. Catal. A, 2019,587117275. doi: 10.1016/j.apcata.2019.117275

    27. [27]

      Vita A, Italiano C, Pino L, Frontera P, Ferraro M, Antonucci V. Activity and Stability of Powder and Monolith-Coated Ni/GDC Catalysts for CO2 Methanation[J]. Appl. Catal. B, 2018,226:384-395. doi: 10.1016/j.apcatb.2017.12.078

    28. [28]

      Tsa S B, Ma H. A Research on Preparation and Application of the Monolithic Catalyst with Interconnecting Pore Structure[J]. Sci. Rep., 2018,816605. doi: 10.1038/s41598-018-35021-2

    29. [29]

      Jin S, Bang G, Liu L, Lee C H. Synthesis of Mesoporous MgO-CeO2 Composites with Enhanced CO2 Capture Rate via Controlled Combustion[J]. Microporous Mesoporous Mater., 2019,288109587. doi: 10.1016/j.micromeso.2019.109587

    30. [30]

      Matović B, Luković J, Stojadinović B, Aškrabić S, Zarubica A, Babić B, Dohčević-Mitrović Z. Influence of Mg doping on Structural, Optical and Photocatalytic Performances of Ceria Nanopowders[J]. Process. Appl. Ceram., 2017,11:304-310. doi: 10.2298/PAC1704304M

    31. [31]

      Liu H, Zou W J, Xu X L, Zhang X L, Yang Y Q, Tian G, Feng S H. The Proportion of Ce4+in Surface of CexZr1-xO2 Catalysts: The Key Parameter for Direct Carboxylation of Methanol to Dimethyl Carbonate[J]. J. CO2 Util., 2017,17:43-49. doi: 10.1016/j.jcou.2016.11.006

    32. [32]

      Alla S K, Mandal R K, Prasad N K. Optical and Magnetic Properties of Mg2+Doped CeO2 Nanoparticles[J]. RSC Adv., 2016,6:103491-103498. doi: 10.1039/C6RA23063F

    33. [33]

      Ma X, Lu P, Wu P. Structural, Optical and Magnetic Properties of CeO2 Nanowires with Nonmagnetic Mg2+Doping[J]. J. Alloys Compd., 2017,734:22-28.

    34. [34]

      Liu B, Li C M, Zhang G, Yao X, Chuang S, Li Z. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods[J]. ACS Catal., 2018,8:10446-10473. doi: 10.1021/acscatal.8b00415

    35. [35]

      Chen Y D, Wang H, Qin Z, Tian S, Li G. TixCe1-xO2 Nanocomposites: A Monolithic Catalyst for Direct Conversion of Carbon Dioxide and Methanol to Dimethyl Carbonate[J]. Green Chem., 2019,21:4642-4649. doi: 10.1039/C9GC00811J

    36. [36]

      Pu Y F, Xuan K, Wang F, Li A X, Zhao N, Xiao F K. Synthesis of Dimethyl Carbonate from CO2 and Methanol over a Hydrophobic Ce/SBA-15 Catalyst[J]. RSC Adv., 2018,8:27216-27226. doi: 10.1039/C8RA04028A

    37. [37]

      Bustamante F, Orrego A F, Villegas S, Villa A L. Modeling of Chemical Equilibrium and Gas Phase Behavior for the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol[J]. Ind. Eng. Chem. Res., 2012,51:8945-8956. doi: 10.1021/ie300017r

  • 加载中
    1. [1]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    2. [2]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    3. [3]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    7. [7]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    8. [8]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    9. [9]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    11. [11]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    17. [17]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(10)
  • Abstract views(639)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return