Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst
- Corresponding author: Na TA, tana@dicp.ac.cn Yong-Dong CHEN, yongdongchen@swpu.edu.cn
Citation:
Yue-Ying YAN, Yue LI, Jie DENG, Xi ZHAO, Na TA, Yong-Dong CHEN. Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(7): 1402-1410.
doi:
10.11862/CJIC.2022.139
Schifter I, Gonzalez U, Gonzalez-Macias C. Effects of Ethanol, Ethyl-tert-butyl Ether and Dimethyl Carbonate Blends with Gasoline on SI engine[J]. Fuel, 2016,183:253-261. doi: 10.1016/j.fuel.2016.06.051
Tundo P, Musolino M, Aricò F. The Reactions of Dimethyl Carbonate and Its Derivatives[J]. Green Chem., 2018,20:28-85. doi: 10.1039/C7GC01764B
Selva M, Perosa A, Fiorani G. Dimethyl Carbonate: A Versatile Reagent for a Sustainable Valorization of Renewables[J]. Green Chem., 2018,20:288-322. doi: 10.1039/C7GC02118F
Keller N, Rebmann G, Keller V. Catalysts, Mechanisms and Industrial Processes for the Dimethyl Carbonate Synthesis[J]. J. Mol. Catal. A: Chem., 2010,317:1-18. doi: 10.1016/j.molcata.2009.10.027
Saavalainen P, Kabra S, Turpeinen E, Oravisjärvi K, Yadav G D, Keiski R L, Pongrácz E. Sustainability Assessment of Chemical Processes: Evaluation of Three Synthesis Routes of DMC[J]. J. Chem., 2015:1-12.
Tamboli A H, Chaugule A A, Kim H. Catalytic Developments in the Direct Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol[J]. Chem. Eng. J., 2017,323:530-544. doi: 10.1016/j.cej.2017.04.112
Dabral S, Schaub T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective[J]. Adv. Synth. Catal., 2019,361:223-246. doi: 10.1002/adsc.201801215
Cai Q H, Lu B, Guo L J, Shan Y K. Studies on Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide[J]. Catal. Commun., 2009,10:605-609. doi: 10.1016/j.catcom.2008.11.002
Liu B, Li C M, Zhang G Q, Yan L F, Li Z. Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol over CaO-CeO2 Catalysts: The Role of Acidic-Basic Properties and Surface Oxygen Vacancies[J]. New J. Chem., 2017,41:12231-12240. doi: 10.1039/C7NJ02606D
Marciniaka A A, Henriqueb F J F S, Limac A F F, Alvesd O C, Moreirae C R, Appele L G, Mota C J A. What are the Preferred CeO2 Exposed Planes for the Synthesis of Dimethyl Carbonate? Answers from Theory and Experiments[J]. Mol. Catal., 2020,493111053. doi: 10.1016/j.mcat.2020.111053
Fu Z W, Yu Y H, Li Z, Han D M, Wang S J, Xiao M, Meng Y Z. Surface Reduced CeO2 Nanowires for Direct Conversion of CO2 and Methanol to Dimethyl Carbonate: Catalytic Performance and Role of Oxygen Vacancy[J]. Catalysts, 2018,8164. doi: 10.3390/catal8040164
Zhao S Y, Wang S P, Zhao Y J, Ma X B. An In Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Well-Shaped CeO2[J]. Chin. Chem. Lett., 2017,28:65-69. doi: 10.1016/j.cclet.2016.06.003
Tamboli A H, Chaugule A A, Gosavi S W, Kim H. CexZr1-xO2 Solid Solutions for Catalytic Synthesis of Dimethyl Carbonate from CO2: Reaction Mechanism and the Effect of Catalyst Morphology on Catalytic Activity[J]. Fuel, 2018,216:245-254. doi: 10.1016/j.fuel.2017.12.008
Fu Z W, Zhong Y Y, Yu Y H, Long L Z, Xiao M, Han D M, Wang S J, Meng Y Z. TiO2-Doped CeO2 Nanorod Catalyst for Direct Conversion of CO2 and CH3OH to Dimethyl Carbonate: Catalytic Performance and Kinetic Study[J]. ACS Omega, 2018,3:198-207. doi: 10.1021/acsomega.7b01475
Yu Q, Wu X X, Tang C J, Qi L, Liu B, Gao F, Sun K Q, Dong L, Chen Y. Textural, Structural, and Morphological Characterizations and Catalytic Activity of Nanosized CeO2-MOx (M=Mg2+, Al3+, Si4+) Mixed Oxides for CO Oxidation[J]. J. Colloid Interface Sci., 2011,354:341-352. doi: 10.1016/j.jcis.2010.10.043
Kang K H, Joe W, Lee C H, Kim M, Kim D B, Jang B, Song I K. Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over CeO2(X)-ZnO (1-X) Nano-Catalysts[J]. J. Nanosci. Nanotechnol., 2013,13:8116-8120. doi: 10.1166/jnn.2013.8177
Sakakura T, Choi J, Saito Y, Sako T. Synthesis of Dimethyl Carbonate from Carbon Dioxide: Catalysis and Mechanism[J]. Polyhedron, 2000,19:573-576. doi: 10.1016/S0277-5387(99)00411-8
Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K. Organic Carbonate Synthesis from CO2 and Alcohol over CeO2 with 2-Cyanopyridine: Scope and Mechanistic Studies[J]. J. Catal., 2014,318:95-107. doi: 10.1016/j.jcat.2014.07.022
Stoian D, Medina F, Urakawa A. Improving the Stability of CeO2 Catalyst by Rare Earth Metal Promotion and Molecular Insights in the Dimethyl Carbonate Synthesis from CO2 and Methanol with 2-Cyanopyridine[J]. ACS Catal., 2018,8:3181-3225. doi: 10.1021/acscatal.7b04198
Wang S P, Zhou J J, Zhao S Y, Zhao Y J, Ma X B. Enhancements of Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide: The In Situ Hydrolysis of 2-Cyanopyridine and Crystal Face Effect of Ceria[J]. Chin. Chem. Lett., 2015,26:1096-1100. doi: 10.1016/j.cclet.2015.05.005
Sakakura T, Saito Y, Okano M, Choi J C, Sako T. Selective Conversion of Carbon Dioxide to Dimethyl Carbonate by Molecular Catalysis[J]. J. Org. Chem., 1998,63:7095-7096. doi: 10.1021/jo980460z
Marciniak A A, Alves O C, Appel L G, Mota C J A. Synthesis of Dimethyl Carbonate from CO2 and Methanol over CeO2: Role of Copper as Dopant and the Use of Methyl Trichloroacetate as Dehydrating Agent[J]. J. Catal., 2019,371:88-95. doi: 10.1016/j.jcat.2019.01.035
Bansode A, Urakawa A. Continuous DMC Synthesis from CO2 and Methanol over a CeO2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent[J]. ACS Catal., 2014,4:3877-3880. doi: 10.1021/cs501221q
Han D M, Chen Y, Wang S J, Xiao M, Lu Y X, Meng Y Z. Effect of Alkali-Doping on the Performance of Diatomite Supported Cu-Ni Bimetal Catalysts for Direct Synthesis of Dimethyl Carbonate[J]. Catalysts, 2018,8:302-312. doi: 10.3390/catal8080302
Santos B, Silva V, Loureiro J, Rodrigues A E. Adsorption of H2O and Dimethyl Carbonate at High Pressure over Zeolite 3A in Fixed Bed Column[J]. Ind. Eng. Chem. Res., 2014,53:2473-2483. doi: 10.1021/ie403830r
Chen Y D, Yang Y, Tian S L, Ye Z B, Li G. Highly Effective Synthesis of Dimethyl Carbonate over CuNi Alloy Nanoparticles@Porous Organic Polymers Composite[J]. Appl. Catal. A, 2019,587117275. doi: 10.1016/j.apcata.2019.117275
Vita A, Italiano C, Pino L, Frontera P, Ferraro M, Antonucci V. Activity and Stability of Powder and Monolith-Coated Ni/GDC Catalysts for CO2 Methanation[J]. Appl. Catal. B, 2018,226:384-395. doi: 10.1016/j.apcatb.2017.12.078
Tsa S B, Ma H. A Research on Preparation and Application of the Monolithic Catalyst with Interconnecting Pore Structure[J]. Sci. Rep., 2018,816605. doi: 10.1038/s41598-018-35021-2
Jin S, Bang G, Liu L, Lee C H. Synthesis of Mesoporous MgO-CeO2 Composites with Enhanced CO2 Capture Rate via Controlled Combustion[J]. Microporous Mesoporous Mater., 2019,288109587. doi: 10.1016/j.micromeso.2019.109587
Matović B, Luković J, Stojadinović B, Aškrabić S, Zarubica A, Babić B, Dohčević-Mitrović Z. Influence of Mg doping on Structural, Optical and Photocatalytic Performances of Ceria Nanopowders[J]. Process. Appl. Ceram., 2017,11:304-310. doi: 10.2298/PAC1704304M
Liu H, Zou W J, Xu X L, Zhang X L, Yang Y Q, Tian G, Feng S H. The Proportion of Ce4+in Surface of CexZr1-xO2 Catalysts: The Key Parameter for Direct Carboxylation of Methanol to Dimethyl Carbonate[J]. J. CO2 Util., 2017,17:43-49. doi: 10.1016/j.jcou.2016.11.006
Alla S K, Mandal R K, Prasad N K. Optical and Magnetic Properties of Mg2+Doped CeO2 Nanoparticles[J]. RSC Adv., 2016,6:103491-103498. doi: 10.1039/C6RA23063F
Ma X, Lu P, Wu P. Structural, Optical and Magnetic Properties of CeO2 Nanowires with Nonmagnetic Mg2+Doping[J]. J. Alloys Compd., 2017,734:22-28.
Liu B, Li C M, Zhang G, Yao X, Chuang S, Li Z. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods[J]. ACS Catal., 2018,8:10446-10473. doi: 10.1021/acscatal.8b00415
Chen Y D, Wang H, Qin Z, Tian S, Li G. TixCe1-xO2 Nanocomposites: A Monolithic Catalyst for Direct Conversion of Carbon Dioxide and Methanol to Dimethyl Carbonate[J]. Green Chem., 2019,21:4642-4649. doi: 10.1039/C9GC00811J
Pu Y F, Xuan K, Wang F, Li A X, Zhao N, Xiao F K. Synthesis of Dimethyl Carbonate from CO2 and Methanol over a Hydrophobic Ce/SBA-15 Catalyst[J]. RSC Adv., 2018,8:27216-27226. doi: 10.1039/C8RA04028A
Bustamante F, Orrego A F, Villegas S, Villa A L. Modeling of Chemical Equilibrium and Gas Phase Behavior for the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol[J]. Ind. Eng. Chem. Res., 2012,51:8945-8956. doi: 10.1021/ie300017r
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Reaction conditions: catalyst: 500 mg, GHSV: 2 880 mL·gcat-1·h-1, nCH3OH∶nCO2=2∶1, temperature: 140 ℃, pressure: 2.4 MPa
Reaction conditions: catalyst: 500 mg, GHSV: 2 880 mL·gcat-1·h-1, nCH3OH∶nCO2=2∶1, temperature: 140 ℃, pressure: 2.4 MPa