Citation: Shao-Kuan ZHU, Ya SONG, Xiang LONG, Quan-Sheng OUYANG, Jiao-Jing SHAO, Bin SHI. La-Doped BaSnO3/Multi-walled Carbon Nanotube Modified Separator: Synthesis and Application in Lithium-Sulfur Battery[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1433-1440. doi: 10.11862/CJIC.2022.138 shu

La-Doped BaSnO3/Multi-walled Carbon Nanotube Modified Separator: Synthesis and Application in Lithium-Sulfur Battery

Figures(5)

  • Herein, an interlayer was constructed on the commercial separator Celgard 2500 (PP) by doctor blade coating a mixture slurry of perovskite oxide lanthanum doped barium stannate (LBSO) that was prepared by coprecipitation method and multi-walled carbon nanotubes (MCNT). The as-obtained modified separator was named LBSO/MCNT/PP. The lithium-sulfur battery using the modified separator delivered an initial discharge specific capacity up to 1 433 mAh·g-1 at 0.1C and a capacity decay rate of 0.114% per cycle over 300 cycles at 1C. As the current density was increased to a 3C rate, a discharge specific capacity of 764 mAh·g-1 can still be maintained, showing excellent rate capability and cycling stability, which is ascribed to the effective inhibition of the interlayer towards the shuttle of polysulfides.
  • 加载中
    1. [1]

      Lu L G, Han X B, Li J Q, Hua J F, Ouyang M G. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles[J]. J. Power Sources, 2013,226:272-288. doi: 10.1016/j.jpowsour.2012.10.060

    2. [2]

      Li W Y, Luo Z H, Long X, Long J Y, Pang C, Li H, Zhi X, Shi B, Shao J J, He Y B. Cation Vacancy-Boosted Lewis Acid-Base Interactions in a Polymer Electrolyte for High-Performance Lithium Metal Batteries[J]. ACS Appl. Mater. Interfaces, 2021,13(43):51107-51116. doi: 10.1021/acsami.1c17002

    3. [3]

      QIU Z X, ZHU S K, WEI Y X, LONG J Y, HUANG D C, SHAO J J. Synthesis and Electrochemical Performance of Sulfur/Multi-walled Carbon Nanotube/Ferroferric Oxide Cathode. Inorganic Chemicals Industry, DOI: 10.19964/j.issn.1006-4990.2021-0498

    4. [4]

      Tan S S, Dai Y H, Jiang Y L, Wei Q L, Zhang G B, Xiong F Y, Zhu X Q, Hu Z Y, Zhou L, Jin Y C. Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anion-Substituted Vanadium Nitride Host[J]. Adv. Funct. Mater., 2021,31(7)2008034. doi: 10.1002/adfm.202008034

    5. [5]

      Wei Z H, Ren Y Q, Sokolowski J, Zhu X D, Wu G. Mechanistic Understanding of the Role Separators Playing in Advanced Lithium-Sulfur Batteries[J]. InfoMat, 2020,2(3):483-508. doi: 10.1002/inf2.12097

    6. [6]

      Zhang B, Luo C, Zhou G M, Pan Z Z, Ma J B, Nishihara H, He Y B, Kang F Y, Lv W, Yang Q H. Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium-Sulfur Batteries with a High Sulfur Loading[J]. Adv. Funct. Mater., 2021,31(26)2100793. doi: 10.1002/adfm.202100793

    7. [7]

      YANG J Y, HAN H J, ZHI R C, QU C Z, KONG L, WANG H Q, XU F, LI H J. Recent Progress on the Design of Hollow Carbon Spheres to Host Sulfur in Room-Temperature Sodium-Sulfur Batteries[J]. New Carbon Materials, 2020,35(6):630-645.  

    8. [8]

      Wild M, O'neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer G. Lithium Sulfur Batteries, a Mechanistic Review[J]. Energy Environ. Sci., 2015,8(12):3477-3494. doi: 10.1039/C5EE01388G

    9. [9]

      Wang X, Luo D, Wang J Y, Sun Z G, Cui G L, Chen Y X, Wang T, Zheng L R, Zhao Y, Shui L L, Zhou G F, Kempa K, Zhang Y G, Chen Z W. Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process[J]. Angew. Chem. Int. Ed., 2021,60(5):2371-2378. doi: 10.1002/anie.202011493

    10. [10]

      Chen Y Y, Xu P, Liu Q B, Yuan D, Long X, Zhu S K. Cobalt Embedded in Porous Carbon Fiber Membranes for High-Performance Lithium-Sulfur Batteries[J]. Carbon, 2022,187:187-195. doi: 10.1016/j.carbon.2021.11.015

    11. [11]

      He Y B, Qiao Y, Chang Z, Cao X, Jia M, He P, Zhou H S. Developing a "Polysulfide-Phobic" Strategy to Restrain Shuttle Effect in Lithium-Sulfur Batteries[J]. Angew. Chem. Int. Ed., 2019,131(34):11900-11904. doi: 10.1002/ange.201906055

    12. [12]

      Wei N, Cai J S, Wang R C, Wang M L, Lv W, Ci H N, Sun J Y, Liu Z F. Elevated Polysulfide Regulation by an Ultralight All-CVD-Built ReS2@N-Doped Graphene Heterostructure Interlayer for Lithium-Sulfur Batteries[J]. Nano Energy, 2019,66104190. doi: 10.1016/j.nanoen.2019.104190

    13. [13]

      Wang J A, Yi S S, Liu J W, Sun S Y, Liu Y P, Yang D W, Xi K, Gao G X, Abdelkader A, Yan W, Ding S J, Kumar R V. Suppressing the Shuttle Effect and Dendrite Growth in Lithium-Sulfur Batteries[J]. ACS Nano, 2020,14(8):9819-9831. doi: 10.1021/acsnano.0c02241

    14. [14]

      Wu J Y, Zeng H X, Li X W, Xiang X, Liao Y G, Xue Z G, Ye Y S, Xie X L. Ultralight Layer-by-Layer Self-Assembled MoS2-Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites[J]. Adv. Energy Mater., 2018,8(35)1802430. doi: 10.1002/aenm.201802430

    15. [15]

      Son B D, Cho S H, Bae K Y, Kim B H, Yoon W Y. Dual Functional Effect of the Ferroelectricity Embedded Interlayer in Lithium-Sulfur Battery[J]. J. Power Sources, 2019,419:35-41. doi: 10.1016/j.jpowsour.2019.02.014

    16. [16]

      Kim H J, Kim J, Kim T H, Lee W J, Jeon B G, Park J Y, Choi W S, Lee S H, Yu J, Noh T W. Indications of Strong Neutral Impurity Scattering in Ba (Sn, Sb)O3 Single Crystals[J]. Phys. Rev. B, 2013,88(12)125204. doi: 10.1103/PhysRevB.88.125204

    17. [17]

      Zhao Z Y, Li G R, Wang Z, Feng M, Sun M Z, Xue X X, Liu R P, Jia H S, Wang Z Z, Zhang W. Black BaTiO3 as Multifunctional Sulfur Immobilizer for Superior Lithium-Sulfur Batteries[J]. J. Power Sources, 2019,434226729. doi: 10.1016/j.jpowsour.2019.226729

    18. [18]

      Kim H J, Kim U, Kim H M, Kim T H, Mun H S, Jeon B G, Hong K T, Lee W J, Ju C J, Kim K H. High Mobility in a Stable Transparent Perovskite Oxide[J]. Appl. Phys. Express, 2012,5(6)061102. doi: 10.1143/APEX.5.061102

    19. [19]

      Shin S S, Yeom E J, Yang W S, Hur S, Kim M G, Im J, Seo J, Noh J H, Seok S I. Colloidally Prepared La-Doped BaSnO3 Electrodes for Efficient, Photostable Perovskite Solar Batteries[J]. Science, 2017,356(6334):167-171. doi: 10.1126/science.aam6620

    20. [20]

      Chen K, Zhang G D, Xiao L P, Li P W, Li W L, Xu Q C, Xu J. Polyaniline Encapsulated Amorphous V2O5 Nanowire-Modified Multi-functional Separators for Lithium-Sulfur Batteries[J]. Small Methods, 2021,5(3)2001056. doi: 10.1002/smtd.202001056

    21. [21]

      Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y. Performance Enhancement of Perovskite Solar Batteries Using a La-Doped BaSnO3 Electron Tansport Layer[J]. J. Mater. Chem. A, 2017,5(7):3675-3682. doi: 10.1039/C6TA09689A

    22. [22]

      Barchasz C, Molton F, Duboc C, Leprêtre J, Patoux S, Alloin F. Lithium/Sulfur Battery Discharge Mechanism: An Original Approach for Intermediate Species Identification[J]. Anal. Chem., 2012,84(9):3973-3980. doi: 10.1021/ac2032244

    23. [23]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 Hollow Spheres as High Efficient Sulfur Host for Li-S Batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.  

    24. [24]

      Zhao M, Peng H J, Zhang Z W, Li B Q, Chen X, Xie J, Chen X, Wei J Y, Zhang Q, Huang J Q. Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries through In Situ Etching of Extrinsic Metal[J]. Angew. Chem. Int. Ed., 2019,58(12):3779-3783. doi: 10.1002/anie.201812062

    25. [25]

      Peng H, Zhang Y G, Chen Y L, Zhang J, Jiang H, Chen X, Zhang Z G, Zeng Y B, Sa B S, Wei Q L. Reducing Polarization of Lithium-Sulfur Batteries via ZnS/Reduced Graphene Oxide Accelerated Lithium Polysulfide Conversion[J]. Mater. Today Energy, 2020,18100519. doi: 10.1016/j.mtener.2020.100519

    26. [26]

      Su Y S, Manthiram A. A New Approach to Improve Cycle Performance of Rechargeable Lithium-Sulfur Batteries by Inserting a FreeStanding MWCNT Interlayer[J]. Chem. Commun., 2012,48(70):8817-8819. doi: 10.1039/c2cc33945e

    27. [27]

      Hu A J, Zhou M J, Lei T Y, Hu Y, Du X C, Gong C H, Shu C Z, Long J P, Zhu J, Chen W. Optimizing Redox Reactions in Aprotic LithiumSulfur Batteries[J]. Adv. Energy Mater., 2020,10(42)2002180. doi: 10.1002/aenm.202002180

    28. [28]

      Yan J H, Liu X B, Li B Y. Capacity Fade Analysis of Sulfur Cathodes in Lithium-Sulfur Batteries[J]. Adv. Sci., 2016,3(12)1600101. doi: 10.1002/advs.201600101

    29. [29]

      Zhang L, Liu Y C, Zhao Z D, Jiang P L, Zhang T, Li M X, Pan S X, Tang T Y, Wu T Q, Liu P Y. Enhanced Polysulfide Regulation via Porous Catalytic V2O3/V8C7 Heterostructures Derived from Metal-Organic Frameworks toward High-Performance Li-S Batteries[J]. ACS Nano, 2020,14(7):8495-8507. doi: 10.1021/acsnano.0c02762

    30. [30]

      LI R, SHUN X G, ZOU J Y, HE Q. NMAP Interlayer for Inhibiting Shuttle Effect of Lithium-Sulfur Battery[J]. Chinese J. Inorg. Chem., 2020,36(4):673-680.  

    31. [31]

      Saroha R, Heo J, Li X Y, Angulakshmi N, Lee Y, Ahn H J, Ahn J H, Kim J H. Asymmetric Separator Integrated with Ferroelectric-BaTiO3 and Mesoporous-CNT for the Reutilization of Soluble Polysulfide in Lithium-Sulfur Batteries[J]. J. Alloys Compd., 2022,893162272. doi: 10.1016/j.jallcom.2021.162272

    32. [32]

      Zhang S Q, Qin X Y, Liu Y M, Zhang Li H, Liu D Q, Xia Y, Zhu H, Li B H, Kang F Y. A Conductive/Ferroelectric Hybrid Interlayer for Highly Improved Trapping of Polysulfides in Lithium-Sulfur Batteries[J]. Adv. Mater. Interfaces, 2019,6(22)1900984. doi: 10.1002/admi.201900984

  • 加载中
    1. [1]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    4. [4]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    5. [5]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    6. [6]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    7. [7]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    8. [8]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    9. [9]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    10. [10]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    11. [11]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    12. [12]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    13. [13]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    14. [14]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    17. [17]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    18. [18]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    19. [19]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    20. [20]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

Metrics
  • PDF Downloads(4)
  • Abstract views(769)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return