Citation: Jia-Bin LUO, Jin-Zhong GUO, Zhi-Yin XIAO, Wei ZHONG, Xue-Ming LI, Xiao-Ming LIU. Preparation of Dicarbonyl Iron Compounds with a Bidentate Phosphine and Their CO Release Behaviors upon Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1241-1251. doi: 10.11862/CJIC.2022.134 shu

Preparation of Dicarbonyl Iron Compounds with a Bidentate Phosphine and Their CO Release Behaviors upon Irradiation

Figures(12)

  • CO-releasing molecule (CORM) facilitates the precise delivery of CO in the human body. To improve the stability of CORM, iron dicarbonyl compounds bearing a bidentate phosphine ligand, [Fe(cis-CO)2(dppp)I2] (1, dppe=1, 2-bis(diphenylphosphino)ethane), [Fe(cis-CO)2(dppp)I2] (2, dppp=1, 3-bis(diphenylphosphino)propane), and[Fe(trans-CO)2{Ph2PN(cyclohexyl)PPh2}I2] (3) were prepared by reacting of the precursor[Fe(CO)4I2] with the phosphine ligands via coordination substitution reactions. The compounds were structurally characterized by means of FT-IR, UV-Vis, NMR, elemental analysis, and single-crystal X-ray diffraction (for compounds 2 and 3). Moreover, CO-releasing behaviors of compounds 1-3 in DMSO were investigated by FT-IR to evaluate their application as a potential CORM. As demonstrated by the FT-IR spectroscopical monitoring, these compounds exhibited good stability in the dark but were easily decomposed to release CO upon irradiation of visible lights (red, green, and blue lights). Their degradation with CO release depends on the energy of the light source and the chemical structures of the compounds. Moreover, isomerization transformations of compounds 1 and 2 from cis- to trans-dicarbonyl configuration were confirmed by the FT-IR spectroscopy under the green and blue lights. However, the red light did not trigger the configuration conversion due to its low energy. Among them, the trans-dicarbonyl compound 3 exhibited the best stability upon the irradiation, which adopted a zero-order model for the photo-induced CO release.
  • 加载中
    1. [1]

      Yang X X, Lu W, Hopper C P, Ke B W, Wang B H. Nature's Marvels Endowed in Gaseous Molecules Ⅰ: Carbon Monoxide and its Physiological and Therapeutic Roles[J]. Acta Pharm. Sin. B, 2021,11(6):1434-1445.

    2. [2]

      ZHOU L L, ZHOU Y Q, TANG Y L, YANG K W, ZHANG L, GAO L X, ZHANG G F, GAO Z W, ZHANG W Q. Antibacterial Fischer Carbenoid CO-Releasing Molecules[J]. Chin. J. Org. Chem., 2016,36(11):2695-2703.

    3. [3]

      WANG X, SONG M M, SHEN W C, QIN W T, LU W H, SUN B W. Effect and Mechanism of Exogenous Carbon Monoxide Against Excessive Neutrophil Infiltration in Liver and Lung Tissues during Sepsis[J]. Chinese Journal of Trauma, 2015,31(3):201-206.

    4. [4]

      Liu H P, Gong Y G, Zhang T F, Li N, Zhao Q Y, Chen Y L, Liu B, Zheng Y W. Syntheses, Cytotoxicity and Properties of CO Releasing Molecules Containing Acetyl Salicylamide-3-pyridine[J]. Chin. J. Chem., 2015,33(7):739-748.

    5. [5]

      RUAN Y L, WANG L, ZHAO Y, WANG J X, CHEN S, MING C S, CHEN G. Carbon Monoxide-Releasing Molecule CORM-2 Protects Against Renal Ischemia-Reperfusion Injury in Mice[J]. Chinese Journal of Organ Transplantation, 2013,34(11):685-689.

    6. [6]

      YANG Y C, ZHOU J L, HUANG X L, ZHONG W J. Role of CO-Releasing Molecule in the Lung Injuried by Limb Ischemia-Reperfusion[J]. Chinese Journal of Emergency Medicine, 2012,21(1):43-47.

    7. [7]

      MENG X L, FEI D S, NAN C C, KANG K, PAN S H, LUO Y P, YANG S L, ZHAO M Y. The Effect of CORM-2 on Pulmonary Fibrosis of Aged Mice Induced by Paraquat and Its Mechanism[J]. Chinese Journal of Gerontology, 2012,32(6):1174-1176.

    8. [8]

      CHEN P, WANG W W, WANG G, CHEN H, SUN B, JIANG H C. An Experimental Study on Protective Effect of Carbon Monoxide Releasing Molecule on Severe Acute Pancreatitis Induced Lung Injury[J]. Chinese Journal of Hepatobiliary Surgery, 2010,16(3):196-199.

    9. [9]

      Motterlini R, Otterbein L E. The Therapeutic Potential of Carbon Monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743.

    10. [10]

      Zhou J L, Li G, Hai Y, Guan L, Huang X L, Sun P. Protection of Carbon Monoxide-Releasing Molecule against Lung Injury Induced by Limb Ischemia-Reperfusion[J]. Chin. J. Traumatol., 2009,12(2):71-76.

    11. [11]

      Kim H P, Ryter S W, Choi A M K. CO as a Cellular Signaling Molecule[J]. Annu. Rev. Pharmacool. Toxicol., 2006,46(1):411-449.

    12. [12]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon Monoxide-Releasing Molecules-Characterization of Biochemical and Vascular Activities[J]. Circ. Res., 2002,90(2):E17-E24.

    13. [13]

      Ji X Y, Wang B H. Strategies toward Organic Carbon Monoxide Prodrugs[J]. Acc. Chem. Res., 2018,51(6):1377-1385.

    14. [14]

      MannBE . CO-ReleasingMolecules: APersonalView[J]. Organometallics, 2012,31(16):5728-5735.

    15. [15]

      Romao C C, Blattler W A, Seixas J D, Bernardes G J L. Developing Drug Molecules for Therapy with Carbon Monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583.

    16. [16]

      Wright M A, Wright J A. PhotoCORMs: CO Release Moves into the Visible[J]. Dalton Trans., 2016,45(16):6801-6811.

    17. [17]

      Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection and Development of Carbon Monoxide-Releasing Molecules (CO-RMs)[J]. J. Med. Chem., 2017,61(7):2611-2635.

    18. [18]

      Ford P C. Metal Complex Strategies for Photo-Uncaging the Small Molecule Bioregulators Nitric Oxide and Carbon Monoxide[J]. Coord. Chem. Rev., 2018,376:548-564.

    19. [19]

      Wang P P, Liu H P, Zhao Q Y, Chen Y L, Liu B, Zhang B P, Zheng Q. Syntheses and Evaluation of Drug-Like Properties of CO-Releasing Molecules Containing Ruthenium and Group 6 Metal[J]. Eur. J. Med. Chem., 2014,74:199-215.

    20. [20]

      Zhang T F, Li M, Gong Y G, Xi N, Zheng Y W, Zhao Q Y, Chen Y L, Liu B. Syntheses, Properties and Bio-activities of Water-Soluble CO-Releasing Molecule Based on Manganese[J]. J. Biol. Inorg. Chem., 2016,21(7):807-824.

    21. [21]

      ZHANG X L, TIAN G, ZHANG X, WANG Q, GU Z J. Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications[J]. Acta Chim. Sinica, 2019,77(5):406-417.

    22. [22]

      Shao C C, Duan H Y, Min Y Q, Zhang X H. Diphenyl Cyclopropenone-Centered Polymers for Site-Specific CO-Releasing and Chain Dissociation[J]. Chin. Chem. Lett., 2020,31(1):299-302.

    23. [23]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief Survey of Diiron and Monoiron Carbonyl Complexes and Their Potentials as CO-Releasing Molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634.

    24. [24]

      LIANG S W, ZHONG W, ZHAN C X, ZHAO J, LI W Q, YE P, WANG H D, SHEN J, FAN L, XIAO Z Y, LIU X M. Synthesis and Characterization of [FeFe]-Hydrogenase Model Complex Functionalized Polymers Based on Different Content of Alkaline Group[J]. Chinese J. Inorg. Chem., 2015,31(1):87-96.

    25. [25]

      Mann B E. Carbon Monoxide: An Essential Signalling Molecule[J]. Top. Organomet. Chem., 2010,32:247-285.

    26. [26]

      Zhang W Q, Atkin A J, Thatcher R J, Whitwood A C, Fairlamb I J S, Lynam J M. Diversity and Design of Metal-Based Carbon Monoxide-Releasing Molecules (CO-RMs) in Aqueous Systems: Revealing the Essential Trends[J]. Dalton Trans., 2009(22):4351-4358.

    27. [27]

      Zhou N, Peng L, Salgado S H, Yuan J Y, Wang X S. Synthesis of Air-Stable Cyclopentadienyl Fe(CO)2(Fp) Polymers by a Host-Guest Interaction of Cyclodextrin with Air-Sensitive Fp Pendant Groups[J]. Angew. Chem. Int. Ed., 2017,56(22):6246-6250.

    28. [28]

      Nakae T, Hirotsu M, Nakajima H. CO Release from N, C, S-Pincer Iron(Ⅲ) Carbonyl Complexes Induced by Visible-to-NIR Light Irradiation: Mechanistic Insight into Effects of Axial Phosphorus Ligands[J]. Inorg. Chem., 2018,57(14):8615-8626.

    29. [29]

      Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four Iron(Ⅱ) Carbonyl Complexes Containing both Pyridyl and Halide Ligands: Their Synthesis, Characterization, Stability, and Anticancer Activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045.

    30. [30]

      Guo J Z, Guo Z M, Xiao Z Y, Jin J, Yang X Q, He Y, Liu X M. Further Exploration of the Reaction between cis-[Fe(CO)4I2] and Alkylamines: An Aminium Salt of fac-[Fe(CO)3I3]- or an Amine-Bound Complex of fac-[Fe(CO)3I2(NH2R)]?[J]. Organomet. Chem., 2021,35(8)e6280.

    31. [31]

      Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The Monoiron Anion fac-[Fe(CO)3I3]- and Its Organic Aminium Salts: Their Preparation, CO-Release, and Cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308.

    32. [32]

      Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) Pentacarbonyl Complexes as CO-Releasing Molecules: Their Synthesis, Characterization, CO-Releasing Behaviour and Biocompatibility[J]. Dalton Trans., 2019,48(2):468-477.

    33. [33]

      Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-Shell Materials Bearing Iron (Ⅱ) Carbonyl Units and Their CO-Release via an Upconversion Process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168.

    34. [34]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced Carbon Monoxide Release from Half-Sandwich Iron (Ⅱ) Carbonyl Complexes by Visible Irradiation: Kinetic Analysis and Mechanistic Investigation[J]. Chem. Eur. J., 2015,21(37):13065-13072.

    35. [35]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-Soluble Diiron Hexacarbonyl Complex as a CO-RM: Controllable CO-Releasing, Releasing Mechanism and Biocompatibility[J]. Dalton Trans., 2013,42(44):15663-15669.

    36. [36]

      Xiao Z Y, Natarajan M, Zhong W, Liu X M. Probing into the Electrochemistry of Four Nickel (Ⅱ) and Cobalt (Ⅱ) Complexes with Azadiphosphine Ligands (PNP) and Their Catalysis on Proton Reduction[J]. Electrochim. Acta, 2020,340135998.

    37. [37]

      Xiao Z Y, Wei Z H, Long L, Wang Y L, Evans D J, Liu X M. Diiron Carbonyl Complexes Possessing a {Fe(Ⅱ)Fe(Ⅱ)} Core: Synthesis, Characterisation, and Electrochemical Investigation[J]. Dalton Trans., 2011,40(16):4291-4299.

    38. [38]

      Li B, Liu T B, Popescu C V, Bilko A, Darensbourg M Y. Synthesis and Mossbauer Characterization of Octahedral Iron(Ⅱ) Carbonyl Complexes FeI2(CO)3L and FeI2(CO)2L2: Developing Models of the [Fe]-H2ase Active Site[J]. Inorg. Chem., 2009,48(23):11283-11289.

    39. [39]

      Ma X Y, Zhang X, Wang J C, Li S, Zhang T Y, Jiang S, Li B. Diphosphine Ligand-Containing Model Complex of [Fe]-H2ase Active Site as Direct Phenol Hydroxylation Catalyst in the Aqueous Phase[J]. J. Chem. Technol. Biotechnol., 2022,97(5):1200-1206.

    40. [40]

      Eady S C, Breault T, Thompson L, Lehnert N. Highly Functionalizable Penta-Coordinate Iron Hydrogen Production Catalysts with Low Overpotentials[J]. Dalton Trans., 2016,45(3):1138-1151.

    41. [41]

      Wang X F, Li Z M, Zeng X R, Luo Q Y, Evans D J, Pickett C J, Liu X M. The Iron Centre of the Cluster-Free Hydrogenase (Hmd): Low-Spin Fe(Ⅱ) or Low-Spin Fe(0)? Chem[J]. Commun., 2008(30):3555-3557.

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(4)
  • Abstract views(807)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return