Citation: Gui-Xiang ZHAN, Hong-Yu YANG, Jun-Ran ZHANG, Lin WANG. Structural Dimensions and Optoelectronic Properties of Chiral Perovskites[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1441-1450. doi: 10.11862/CJIC.2022.133 shu

Structural Dimensions and Optoelectronic Properties of Chiral Perovskites

Figures(7)

  • The past decade has witnessed an explosion of research into organic‐inorganic hybrid perovskites due to their outstanding optoelectronic properties, including high flexibility, high absorption/emission efficiency, large defect tolerance, and long‐distance carrier diffusion. Recently, chiral hybrid perovskites, combing the unique properties of perovskites and chiral materials, show promising potential in the applications of the three‐dimensional display, optical information processing, quantum optics, biological probe, and spintronics, etc. Particularly, chiral hybrid perovskites exhibit robust circularly polarized light emission and sensitive circularly polarized light detection, as the present chiral molecules can rotate the light polarization plane differently and/or absorb the left‐handed (σ-) and right‐handed (σ+) circularly polarized light differently. Considering that circularly polarized light can create nonequilibrium spin polarization between the two Rashba‐split bands, chiral perovskites are promising for chiro‐spintronic and chiro‐optoelectronic applications. Chiral perovskites can be sorted as one‐dimensional, two‐dimensional, and three‐dimensional structures according to the space distributions of organic and inorganic components. This work demonstrates the crystal structure, and optical and optoelectronic properties of chiral perovskite of different dimensionalities, including the circular dichroism, the photoluminescence, and photodetection properties under the excitation of circularly polarized light. Considering the van der Waals coupling layered structure of two‐dimensional chiral perovskites, we also introduce the work on their two‐dimensional heterostructures combined with other two‐dimensional materials. Last, the important challenges and promising directions of chiral perovskites are summarized in aspects of material design and device exploration.
  • 加载中
    1. [1]

      Ajayakumar A, Muthu C, Dev V A, Pious J K, Vijayakumar C. Two‐Dimensional Halide Perovskites: Approaches to Improve Optoelectronic Properties[J]. Chem. Asian J., 2022,17(1)e202101075.

    2. [2]

      Choi J, Han J S, Hong K, Kim S Y, Jang H W. Organic‐Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses[J]. Adv. Mater., 2018,30(42)e1704002. doi: 10.1002/adma.201704002

    3. [3]

      Fu Y P, Zhu H M, Chen J, Hautzinger M P, Zhu X Y, Jin S. Metal Halide Perovskite Nanostructures for Optoelectronic Applications and the Study of Physical Properties[J]. Nat. Rev. Mater., 2019,4(3):169-188. doi: 10.1038/s41578-019-0080-9

    4. [4]

      Leng K, Fu W, Liu Y P, Chhowalla M, Loh K P. From Bulk to Molecularly Thin Hybrid Perovskites[J]. Nat. Rev. Mater., 2020,5(7):482-500. doi: 10.1038/s41578-020-0185-1

    5. [5]

      Zhang J R, Song X F, Wang L, Huang W. Ultrathin Two‐Dimensional Hybrid Perovskites toward Flexible Electronics and Optoelectronics[J]. Natl. Sci. Rev., 2022,9(5)nwab129. doi: 10.1093/nsr/nwab129

    6. [6]

      Chang Q, Wang F F, Xu W X, Wang A F, Liu Y, Wang J G, Yun Y K, Gao S, Xiao K, Zhang L L, Wang L, Wang J P, Huang W, Qin T S. Ferrocene‐Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells[J]. Angew. Chem. Int. Ed., 2021,60(48):25567-25574. doi: 10.1002/anie.202112074

    7. [7]

      Chen Q, Ma T T, Wang F F, Liu Y, Liu S Z, Wang J G, Cheng Z C, Chang Q, Yang R, Huang W C, Wang L, Qin T S, Huang W. Rapid Microwave‐Annealing Process of Hybrid Perovskites to Eliminate Miscellaneous Phase for High Performance Photovoltaics[J]. Adv. Sci., 2020,7(12)2000480. doi: 10.1002/advs.202000480

    8. [8]

      Liu Y, Liu F, Wang J G, Huang H Y, Yan S H, Gao S, Wang L, Huang W, Qin T S. Tetrakis (N‐Phenothiazine) Spirobifluorene‐Based Hole‐Transporting Material towards High Photovoltage Perovskite Photovoltaics for Priving Electrochromic Devices[J]. Dyes Pigm., 2021,188109164. doi: 10.1016/j.dyepig.2021.109164

    9. [9]

      Liu Y, Wang J G, Wang F F, Cheng Z C, Fang Y Y, Chang Q, Zhu J X, Wang L, Wang J P, Huang W, Qin T S. Full‐Frame and High‐Contrast Smart Windows from Halide‐Exchanged Perovskites[J]. Nat. Commun., 2021,12(1)3360. doi: 10.1038/s41467-021-23701-z

    10. [10]

      Song X F, Yin H, Chang Q, Qian Y C, Lyu C G, Min H H, Zong X R, Liu C, Fang Y Y, Cheng Z C, Qin T S, Huang W, Wang L. One‐Dimensional (NH=CINH3)3PbI5 Perovskite for Ultralow Power Consumption Resistive Memory[J]. Research, 20219760729.

    11. [11]

      Sun Y, Zhang L, Wang N N, Zhang S T, Cao Y, Miao Y F, Xu M M, Zhang H, Li H, Yi C, Wang J P, Huang W. The Formation of Perovskite Multiple Quantum Well Structures for High Performance Light‐Emitting Diodes[J]. npj Flexible Electron., 2018,2(1)12. doi: 10.1038/s41528-018-0026-0

    12. [12]

      Yun Y K, Wang F F, Huang H Y, Fang Y Y, Liu S Z, Huang W C, Cheng Z C, Liu Y, Cao Y Z, Gao M, Zhu L, Wang L, Qin T S, Huang W. A Nontoxic Bifunctional (Anti)solvent as Digestive‐Ripening Agent for High‐Performance Perovskite Solar Cells[J]. Adv. Mater., 2020,32(14)e1907123. doi: 10.1002/adma.201907123

    13. [13]

      Huang Z, Sun Y, Zhang Z, Zhou Z, Liu B W, Zhong J X, Zhang W, Ouyang G, Zhang J R, Wang L, Huang W. Tunable Excitonic Properties in Two‐Dimensional Heterostructures Based on Solution‐Processed PbI2 Flakes[J]. J. Mater. Sci., 2020,55(24):10656-10667. doi: 10.1007/s10853-020-04735-y

    14. [14]

      Sun Y, Zhou Z S, Huang Z, Wu J B, Zhou L J, Cheng Y, Liu J Q, Zhu C, Yu M T, Yu P, Zhu W, Liu Y, Zhou J, Liu B W, Xie H G, Cao Y, Li H, Wang X R, Liu K H, Wang X Y, Wang J P, Wang L, Huang W. Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals[J]. Adv. Mater., 2019,31(17)e1806562. doi: 10.1002/adma.201806562

    15. [15]

      Sun S Q, Lu M, Gao X P, Shi Z F, Bai X, Yu W W, Zhang Y. 0D Perovskites: Unique Properties, Synthesis, and Their Applications[J]. Adv. Sci., 2021,8(24)e2102689. doi: 10.1002/advs.202102689

    16. [16]

      Ma J Q, Wang H Z, Li D H. Recent Progress of Chiral Perovskites: Materials, Synthesis, and Properties[J]. Adv. Mater., 2021,33(26)e2008785. doi: 10.1002/adma.202008785

    17. [17]

      Zhong J X, Sun Y, Liu B W, Zhu C, Cao Y, Sun E C, He K Y, Zhang W, Liao K, Wang X Y, Liu Z, Wang L. Thickness Dependent Properties of Ultrathin Perovskite Nanosheets with Ruddlesden‐Popper‐like Atomic Stackings[J]. Nanoscale, 2021,13(45):18961-18966. doi: 10.1039/D1NR02939H

    18. [18]

      Naaman R, Paltiel Y, Waldeck D H. Chiral Molecules and the Electron Spin[J]. Nat. Rev. Chem., 2019,3(4):250-260. doi: 10.1038/s41570-019-0087-1

    19. [19]

      Ahn J, Lee E, Tan J, Yang W, Kim B, Moon J. A New Class of Chiral Semiconductors: Chiral‐Organic‐Molecule‐Incorporating Organic‐Inorganic Hybrid Perovskites[J]. Mater. Horiz., 2017,4(5):851-856. doi: 10.1039/C7MH00197E

    20. [20]

      Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O, Valentine J. Circularly Polarized Light Detection with Hot Electrons in Chiral Plasmonic Metamaterials[J]. Nat. Commun., 2015,68379. doi: 10.1038/ncomms9379

    21. [21]

      Zhang H Y, Tang Y Y, Shi P P, Xiong R G. Toward the Targeted Design of Molecular Ferroelectrics: Modifying Molecular Symmetries and Homochirality[J]. Acc. Chem. Res., 2019,52(7):1928-1938. doi: 10.1021/acs.accounts.8b00677

    22. [22]

      Yuan C Q, Li X Y, Semin S G, Feng Y Q, Rasing T, Xu J L. Chiral Lead Halide Perovskite Nanowires for Second‐Order Nonlinear Optics[J]. Nano Lett., 2018,18(9):5411-5417. doi: 10.1021/acs.nanolett.8b01616

    23. [23]

      Dang Y Y, Liu X L, Cao B Q, Tao X T. Chiral Halide Perovskite Crystals for Optoelectronic Applications[J]. Matter, 2021,4(3):794-820. doi: 10.1016/j.matt.2020.12.018

    24. [24]

      Long G K, Sabatini R, Saidaminov M I, Lakhwani G, Rasmita A, Liu X G, Sargent E H, Gao W B. Chiral‐Perovskite Optoelectronics[J]. Nat. Rev. Mater., 2020,5(6):423-439. doi: 10.1038/s41578-020-0181-5

    25. [25]

      Ma S, Ahn J, Moon J. Chiral Perovskites for Next‐Generation Photonics: From Chirality Transfer to Chiroptical Activity[J]. Adv. Mater., 2021,33(47)e2005760. doi: 10.1002/adma.202005760

    26. [26]

      Billing D G, Lemmerer A. Bis[(S)‐β‐phenethylammonium] Tribromoplumbate[J]. Acta Cryst., 2003,E59:m381-m383.

    27. [27]

      Mercier N, Barres A L, Giffard M, Rau I, Kajzar F, Sahraoui B. Conglomerate‐to‐True‐Racemate Reversible Solid‐State Transition in Crystals of an Organic Disulfide‐Based Iodoplumbate[J]. Angew. Chem. Int. Ed., 2006,45(13):2100-2103. doi: 10.1002/anie.200503423

    28. [28]

      He T C, Li J Z, Li X R, Ren C, Luo Y, Zhao F H, Chen R, Lin X D, Zhang J M. Spectroscopic Studies of Chiral Perovskite Nanocrystals[J]. Appl. Phys. Lett., 2017,111(15)151102. doi: 10.1063/1.5001151

    29. [29]

      Shi Y H, Duan P F, Huo S W, Li Y G, Liu M H. Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence[J]. Adv. Mater., 2018,30(12)e1705011. doi: 10.1002/adma.201705011

    30. [30]

      Long G K, Zhou Y C, Zhang M T, Sabatini R, Rasmita A, Huang L, Lakhwani G, Gao W B. Theoretical Prediction of Chiral 3D Hybrid Organic‐Inorganic Perovskites[J]. Adv. Mater., 2019,31(17)e1807628. doi: 10.1002/adma.201807628

    31. [31]

      Sun B, Liu X F, Li X Y, Zhang Y M, Shao X F, Yang D Z, Zhang H L. Two‐Dimensional Perovskite Chiral Ferromagnets[J]. Chem. Mater., 2020,32(20):8914-8920. doi: 10.1021/acs.chemmater.0c02729

    32. [32]

      Kim H, Kim R M, Namgung S D, Cho N H, Son J B, Bang K, Choi M, Kim S K, Nam K T, Lee J W, Oh J H. Ultrasensitive Near‐Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles[J]. Adv. Sci., 2022,9(5)e2104598. doi: 10.1002/advs.202104598

    33. [33]

      Zheng Y S, Xu J L, Bu X H. 1D Chiral Lead Halide Perovskites with Superior Second‐Order Optical Nonlinearity[J]. Adv. Opt. Mater., 2021,10(1)2101545.

    34. [34]

      Zhao J J, Zhao Y J, Guo Y W, Zhan X Q, Feng J G, Geng Y, Yuan M, Fan X, Gao H F, Jiang L, Yan Y L, Wu Y C. Layered Metal‐Halide Perovskite Single‐Crystalline Microwire Arrays for Anisotropic Nonlinear Optics[J]. Adv. Funct. Mater., 2021,31(48)2105855. doi: 10.1002/adfm.202105855

    35. [35]

      Lu Y, Wang Q, Chen R Y, Qiao L L, Zhou F X, Yang X, Wang D, Cao H, He W, Pan F, Yang Z, Song C. Spin‐Dependent Charge Transport in 1D Chiral Hybrid Lead‐Bromide Perovskite with High Stability[J]. Adv. Funct. Mater., 2021,31(43)2104605. doi: 10.1002/adfm.202104605

    36. [36]

      Fu D Y, Xin J L, He Y Y, Wu S C, Zhang X Y, Zhang X M, Luo J H. Chirality‐Dependent Second‐Order Nonlinear Optical Effect in 1D Organic‐Inorganic Hybrid Perovskite Bulk Single Crystal[J]. Angew. Chem. Int. Ed., 2021,60(36):20021-20026. doi: 10.1002/anie.202108171

    37. [37]

      Wei Q, Zhang Q Y, Xiang L J, Zhang S H, Liu J P, Yang X Y, Ke Y Q, Ning Z J. Giant Spin Splitting in Chiral Perovskites Based on Local Electrical Field Engineering[J]. J. Phys. Chem. Lett., 2021,12(28):6492-6498. doi: 10.1021/acs.jpclett.1c01675

    38. [38]

      Wang J, Fang C, Ma J Q, Wang S, Jin L, Li W C, Li D H. Aqueous Synthesis of Low‐Dimensional Lead Halide Perovskites for Room‐Temperature Circularly Polarized Light Emission and Detection[J]. ACS Nano, 2019,13(8):9473-9481. doi: 10.1021/acsnano.9b04437

    39. [39]

      Zhao Y J, Li X Y, Feng J G, Zhao J J, Guo Y W, Yuan M, Chen G S, Gao H F, Jiang L, Wu Y C. Chiral 1D Perovskite Microwire Arrays for Circularly Polarized Light Detection[J]. Giant, 2022,9100086. doi: 10.1016/j.giant.2021.100086

    40. [40]

      Wang C, Ma L L, Wang S P, Zhao G J. Efficient Photoluminescence of Manganese‐Doped Two‐Dimensional Chiral Alloyed Perovskites[J]. J. Phys. Chem. Lett., 2021,12(50):12129-12134. doi: 10.1021/acs.jpclett.1c03583

    41. [41]

      Zhao Y J, Dong M Q, Feng J G, Zhao J J, Guo Y W, Fu Y, Gao H F, Yang J C, Jiang L, Wu Y C. Lead‐Free Chiral 2D Double Perovskite Microwire Arrays for Circularly Polarized Light Detection[J]. Adv. Opt. Mater., 2021,10(3)2102227.

    42. [42]

      Pan R H, Wang K, Yu Z G. Magnetic‐Field Manipulation of Circularly Polarized Photoluminescence in Chiral Perovskites[J]. Mater. Horiz., 2022,9(2):740-747. doi: 10.1039/D1MH01154E

    43. [43]

      Yan L J, Jana M K, Sercel P C, Mitzi D B, You W. Alkyl‐Aryl Cation Mixing in Chiral 2D Perovskites[J]. J. Am. Chem. Soc., 2021,143(43):18114-18120. doi: 10.1021/jacs.1c06841

    44. [44]

      Ma J Q, Fang C, Liang L H, Wang H Z, Li D H. Full‐Stokes Polarimeter Based on Chiral Perovskites with Chirality and Large Optical Anisotropy[J]. Small, 2021,17(47)e2103855. doi: 10.1002/smll.202103855

    45. [45]

      Liu Z, Zhang C H, Liu X L, Ren A, Zhou Z H, Qiao C, Guan Y W, Fan Y Q, Hu F Q, Zhao Y S. Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection[J]. Adv. Sci., 2021,8(21)e2102065. doi: 10.1002/advs.202102065

    46. [46]

      Zhang X Y, Weng W, Li L N, Wu H C, Yao Y P, Wang Z Y, Liu X T, Lin W X, Luo J H. Heterogeneous Integration of Chiral Lead‐Chloride Perovskite Crystals with Si Wafer for Boosted Circularly Polarized Light Detection in Solar‐Blind Ultraviolet Region[J]. Small, 2021,17(40)e2102884. doi: 10.1002/smll.202102884

    47. [47]

      Lin J T, Chen D G, Yang L S, Lin T C, Liu Y H, Chao Y C, Chou P T, Chiu C W. Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic‐Inorganic Perovskites through Halogenation of the Organic Ions[J]. Angew. Chem. Int. Ed., 2021,60(39):21434-21440. doi: 10.1002/anie.202107239

    48. [48]

      Jana M K, Song R Y, Xie Y, Zhao R D, Sercel P C, Blum V, Mitzi D B. Structural Descriptor for Enhanced Spin‐Splitting in 2D Hybrid Perovskites[J]. Nat. Commun., 2021,12(1)4982. doi: 10.1038/s41467-021-25149-7

    49. [49]

      Seo I C, Lim Y, An S C, Woo B H, Kim S, Son J G, Yoo S, Park Q H, Kim J Y, Jun Y C. Circularly Polarized Emission from Organic‐Inorganic Hybrid Perovskites via Chiral Fano Resonances[J]. ACS Nano, 2021:13781-13793.

    50. [50]

      Zhang X Y, Liu X T, Li L N, Ji C M, Yao Y P, Luo J H. Great Amplification of Circular Polarization Sensitivity via Heterostructure Engineering of a Chiral Two‐Dimensional Hybrid Perovskite Crystal with a Three‐Dimensional MAPbI3 Crystal[J]. ACS Cent. Sci., 2021,7(7):1261-1268. doi: 10.1021/acscentsci.1c00649

    51. [51]

      Sirenko V Y, Kucheriv O I, Naumova D D, Fesych I V, Linnik R P, Dascălu I A, Shova S, Fritsky I O, Guralxskiy I Y A. Chiral Organic‐Inorganic Lead Halide Perovskites Based on α‐Alanine[J]. New J. Chem., 2021,45(28):12606-12612. doi: 10.1039/D1NJ01089A

    52. [52]

      Taniguchi K, Nishio M, Abe N, Huang P J, Kimura S, Arima T H, Miyasaka H. Magneto‐Electric Directional Anisotropy in Polar Soft Ferromagnets of Two‐Dimensional Organic‐Inorganic Hybrid Perovskites[J]. Angew. Chem. Int. Ed., 2021,60(26):14350-14354. doi: 10.1002/anie.202103121

    53. [53]

      Li L S, Wei W J, Gao H Q, Tan Y H, Han X B. Molecular Disorder Induces an Unusual Phase Transition in a Potential 2D Chiral Ferroelectric Perovskite[J]. Chem. Eur. J., 2021,27(35):9054-9059. doi: 10.1002/chem.202100334

    54. [54]

      Zhao Y J, Qiu Y C, Feng J G, Zhao J H, Chen G S, Gao H F, Zhao Y Y, Jiang L, Wu Y C. Chiral 2D‐Perovskite Nanowires for Stokes Photodetectors[J]. J. Am. Chem. Soc., 2021,143(22):8437-8445. doi: 10.1021/jacs.1c02675

    55. [55]

      Zeng Y L, Huang X Q, Huang C R, Zhang H, Wang F, Wang Z X. Unprecedented 2D Homochiral Hybrid Lead‐Iodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching[J]. Angew. Chem. Int. Ed., 2021,60(19):10730-10735. doi: 10.1002/anie.202102195

    56. [56]

      Li D, Liu X T, Wu W T, Peng Y, Zhao S G, Li L N, Hong M C, Luo J H. Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection[J]. Angew. Chem. Int. Ed., 2021,60(15):8415-8418. doi: 10.1002/anie.202013947

    57. [57]

      Wang J Y, Lu H P, Pan X, Xu J W, Liu H L, Liu X J, Khanal D R, Toney M F, Beard M C, Vardeny Z V. Spin‐Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two‐Dimensional Hybrid Organic‐Inorganic Perovskites[J]. ACS Nano, 2021,15(1):588-595. doi: 10.1021/acsnano.0c05980

    58. [58]

      Ma J Q, Fang C, Chen C, Jin L, Wang J Q, Wang S, Tang J, Li D H. Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence[J]. ACS Nano, 2019,13(3):3659-3665. doi: 10.1021/acsnano.9b00302

    59. [59]

      Peng Y, Liu X T, Li L N, Yao Y P, Ye H, Shang X Y, Chen X Y, Luo J H. Realization of Vis‐NIR Dual‐Modal Circularly Polarized Light Detection in Chiral Perovskite Bulk Crystals[J]. J. Am. Chem. Soc., 2021,143(35):14077-14082. doi: 10.1021/jacs.1c07183

    60. [60]

      Lu Y, Wang Q, He R L, Zhou F X, Yang X, Wang D, Cao H, He W L, Pan F, Yang Z, Song C. Highly Efficient Spin‐Filtering Transport in Chiral Hybrid Copper Halides[J]. Angew. Chem. Int. Ed., 2021,60(44):23578-23583. doi: 10.1002/anie.202109595

    61. [61]

      Pan D X, Fu Y P, Spitha N, Zhao Y Z, Roy C R, Morrow D J, Kohler D D, Wright J C, Jin S. Deterministic Fabrication of Arbitrary Vertical Heterostructures of Two‐Dimensional Ruddlesden‐Popper Halide Perovskites[J]. Nat. Nanotechnol., 2021,16(2):159-165. doi: 10.1038/s41565-020-00802-2

    62. [62]

      Sun Y, Yin Y, Pols M, Zhong J X, Huang Z, Liu B W, Liu J Q, Wang W, Xie H G, Zhan G X, Zhou Z S, Zhang W, Wang P C, Zha C Y, Jiang X H, Ruan Y J, Zhu C, Brocks G, Wang X Y, Wang L, Wang J P, Tao S X, Huang W. Engineering the Phases and Heterostructures of Ultrathin Hybrid Perovskite Nanosheets[J]. Adv. Mater., 2020,32(34)e2002392. doi: 10.1002/adma.202002392

    63. [63]

      Mak K F, He K L, Shan J, Heinz T F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity[J]. Nat. Nanotechnol., 2012,7(8):494-498. doi: 10.1038/nnano.2012.96

    64. [64]

      Mak K F, Mcgill K L, Park J, Mceuen P L. The Valley Hall Effect in MoS2 Transistors[J]. Science, 2014,344(6191):1489-1492. doi: 10.1126/science.1250140

    65. [65]

      Pu J, Takenobu T. Monolayer Transition Metal Dichalcogenides as Light Sources[J]. Adv. Mater., 2018e1707627.

    66. [66]

      Zeng H, Dai J F, Yao W, Xiao D, Cui X D. Valley Polarization in MoS2 Monolayers by Optical Pumping[J]. Nat. Nanotechnol., 2012,7(8):490-493. doi: 10.1038/nnano.2012.95

    67. [67]

      Chen Y Y, Ma J Q, Liu Z Y, Li J Z, Duan X F, Li D H. Manipulation of Valley Pseudospin by Selective Spin Injection in Chiral Two‐Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures[J]. ACS Nano, 2020,14(11):15154-15160.

    68. [68]

      Chen Y Y, Liu Z Y, Li J Z, Cheng X, Ma J Q, Wang H Z, Li D H. Robust Interlayer Coupling in Two‐Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures[J]. ACS Nano, 2020,14(8):10258-10264.

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(136)
  • Abstract views(2458)
  • HTML views(856)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return