Citation: Jie CHU, Lu SUN, De-Jin HUANG, Zhou-Hong ZHAO, Xue-Mei LI, Chang-Fu ZHUANG, Ying WANG. Hierarchical Nitrogen-Doped Porous Carbon-Supported Cobalt Nanoparticles for Promoting Catalytic Transfer Hydrogenation of Furfural[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1327-1336. doi: 10.11862/CJIC.2022.132 shu

Hierarchical Nitrogen-Doped Porous Carbon-Supported Cobalt Nanoparticles for Promoting Catalytic Transfer Hydrogenation of Furfural

  • Corresponding author: Ying WANG, yingwang@swfu.edu.cn
  • Received Date: 6 February 2022
    Revised Date: 11 May 2022

Figures(6)

  • Hierarchical nitrogen-doped porous carbon-supported cobalt nanoparticles (Co/HNPC) with a high specific surface area were used for the catalytic transfer hydrogenation reaction of furfural (FF). The experimental results showed that Co/HNPC achieved 97.6% FF conversion and 95.3% furfuryl alcohol (FOL) selectivity at 120℃ and 4 h under mild conditions. The excellent catalytic performance is mainly determined by the synergy between the metal and HNPC support, as well as the loading of the metal itself. Furthermore, the stability of Co/HNPC catalyst was also enhanced due to the high specific surface area and N doping of HNPC support.
  • 加载中
    1. [1]

      Islam M J, Granollers M M, Osatiastiani A, Taylor M J, Manayil J C, Parlett C M A, Isaacs M A, Kyriakou G. The Effect of Metal Precursor on Copper Phase Dispersion and Nanoparticle Formation for the Catalytic Transformations of Furfural[J]. Appl. Catal. B, 2020,273119062. doi: 10.1016/j.apcatb.2020.119062

    2. [2]

      Luo W H, Cao W X, Bruijnincx P C A, Lin L, Wang A Q, Zhang T. Zeolite-Supported Metal Catalysts for Selective Hydrodeoxygenation of Biomass-Derived Platform Molecules[J]. Green Chem., 2019,21(14):3744-3768. doi: 10.1039/C9GC01216H

    3. [3]

      Bhogeswararao S, Srinivas D. Catalytic Conversion of Furfural to Industrial Chemicals over Supported Pt and Pd Catalysts[J]. J. Catal., 2015,327:65-77. doi: 10.1016/j.jcat.2015.04.018

    4. [4]

      Panagiotopoulou P, Vlachos D G. Liquid Phase Catalytic Transfer Hydrogenation of Furfural over a Ru/C Catalyst[J]. Appl. Catal. A, 2014,480:17-24. doi: 10.1016/j.apcata.2014.04.018

    5. [5]

      Taylor M J, Durndell L J, Isaacs M A, Parlett C M A, Wilson K, Lee A F, Kyriakou G. Highly Selective Hydrogenation of Furfural over Supported Pt Nanoparticles under Mild Conditions[J]. Appl. Catal. B, 2016,180:580-585. doi: 10.1016/j.apcatb.2015.07.006

    6. [6]

      Farrar-Tobar R A, Dell'acqua A, Tin S, De Vries J G. Metal-Catalysed Selective Transfer Hydrogenation of α, β-unsaturated Carbonyl Compounds to Allylic Alcohols[J]. Green Chem., 2020,22(11):3323-3257. doi: 10.1039/D0GC00855A

    7. [7]

      Valekar A H, Lee M, Yoon J W, Kwak J, Hong D Y, Oh K R, Cha G Y, Kwon Y U, Jung J, Chang J S, Hwang Y K. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification[J]. ACS Catal., 2020,10(6):3720-3732. doi: 10.1021/acscatal.9b05085

    8. [8]

      Yu J, Yang Y S, Chen L F, Li Z H, Liu W, Xu E Z, Zhang Y J, Hong S, Zhang X, Wei M. NiBi Intermetallic Compounds Catalyst toward Selective Hydrogenation of Unsaturated Aldehydes[J]. Appl. Catal. B, 2020,277119273. doi: 10.1016/j.apcatb.2020.119273

    9. [9]

      ZHU S, SHENG J, JIA G D, LIU H D, LI Y. Synthesis and Modification of Mesoporous Carbon Nanomaterials[J]. Chinese J. Inorg. Chem., 2022,38(1):1-13.  

    10. [10]

      Fan Y F, Li S J, Wang Y, Zhuang C F, Liu X T, Zhu G S, Zou X Q. Tuning the Synthesis of Polymetallic-Doped ZIF Derived Materials for Efficient Hydrogenation of Furfural to Furfuryl Alcohol[J]. Nanoscale, 2020,12(35):18296-18304. doi: 10.1039/D0NR04098C

    11. [11]

      Li S J, Fan Y, Wu C H, Zhuang C F, Wang Y, Li X M, Zhao J, Zheng Z F. Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants[J]. ACS Appl. Mater. Interfaces, 2021,13(7):8507-8517. doi: 10.1021/acsami.1c01436

    12. [12]

      Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural[J]. Chem. Rev., 2018,118(22):11023-11117. doi: 10.1021/acs.chemrev.8b00134

    13. [13]

      Nakagawa Y, Tamura M, Tomishige K. Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen[J]. ACS Catal., 2013,3(12):2655-2668. doi: 10.1021/cs400616p

    14. [14]

      YU J, ZHANG T, LIU Q, LIU J Y, WANG J. Preparation of Nitrogen-Doped Carbon Fiber Supported Nickel-Cobalt Selenides for Electrocatalytic Hydrogen Evolution Performance[J]. Chinese J. Inorg. Chem., 2022,38(1):63-72.  

    15. [15]

      Sun L, Fan Y F, Chu J, Zhou X J, Zhuang C F, Zou X Q, Min C G, Wang Y, Zhu G S. Hierarchically Nitrogen-Doped Porous Carbon-Supported Non-noble Metal Nanoparticles for Promoting the Selective Hydrogenation of Furfural[J]. ChemNanoMat, 2021,8(2)e202100493.

    16. [16]

      Liu B, Yao H Q, Song W Q, Jin L, Mosa I M, Rusling J F, Suib S L, He J. Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft" Nitriding[J]. J. Am. Chem. Soc., 2016,138(14):4718-4721. doi: 10.1021/jacs.6b01702

    17. [17]

      Nakagawa Y, Nakazawa H, Watanabe H, Tomishige K. Total Hydrogenation of Furfural over a Silica-Supported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor[J]. ChemCatChem, 2012,4(11):1791-1797. doi: 10.1002/cctc.201200218

    18. [18]

      Ning X M, Yu H, Peng F, Wang H J. Pt Nanoparticles Interacting with Graphitic Nitrogen of N-Doped Carbon Nanotubes: Effect of Electronic Properties on Activity for Aerobic Oxidation of Glycerol and Electro-oxidation of CO[J]. J. Catal., 2015,325:136-144. doi: 10.1016/j.jcat.2015.02.010

    19. [19]

      Peera S G, Balamurugan J, Kim N H, Lee J H. Sustainable Synthesis of Co@NC Core Shell Nanostructures from Metal Organic Frameworks via Mechanochemical Coordination Self-Assembly: An Efficient Electrocatalyst for Oxygen Reduction Reaction[J]. Small, 2018,14(19)1800441. doi: 10.1002/smll.201800441

    20. [20]

      Chen F, Surkus A E, He L, Pohl M M, Radnik J, Topf C, Junge K, Beller M. Selective Catalytic Hydrogenation of Heteroarenes with N-Graphene-Modified Cobalt Nanoparticles (Co3O4-Co/NGr@α-Al2O3)[J]. J. Am. Chem. Soc., 2015,137(36):11718-11724. doi: 10.1021/jacs.5b06496

    21. [21]

      Hou C, Fu L H, Wang Y, Chen W Q, Chen F, Zhang S F, Wang J Z. Co-MOF-74 Based Co3O4/Cellulose Derivative Membrane as Dualfunctional Catalyst for Colorimetric Detection and Degradation of Phenol[J]. Carbohydr. Polym., 2021,273118548. doi: 10.1016/j.carbpol.2021.118548

    22. [22]

      He J H, Lyu P, Jiang B, Chang S S, Du H R, Zhu J, Li H X. A Novel Amorphous Alloy Photocatalyst (NiB/In2O3) Composite for SunlightInduced CO2 Hydrogenation to HCOOH[J]. Appl. Catal. B, 2021,298120603. doi: 10.1016/j.apcatb.2021.120603

    23. [23]

      Hassan H M A, Betiha M A, Elshaarawy R F M, El-Shall M S. Promotion Effect of Palladium on Co3O4 Incorporated within Mesoporous MCM-41 Silica for CO Oxidation[J]. Appl. Surf. Sci., 2017,40299107.

    24. [24]

      Liu H R, Xu S Y, Zhou G L, Xiong K, Jiao Z J, Wang S. CO2 Hydrogenation to Methane over Co/KIT-6 Catalysts: Effect of Co Content[J]. Fuel, 2018,217:570-576. doi: 10.1016/j.fuel.2017.12.112

    25. [25]

      Zhang F M, Jin Y, Fu Y H, Zhong Y J, Zhu W D, Ibrahim A A, El-Shall M S. Palladium Nanoparticles Incorporated within Sulfonic Acid-Functionalized MIL-101(Cr) for Efficient Catalytic Conversion of Vanillin[J]. J. Mater. Chem. A, 2015,3(33):17008-17015. doi: 10.1039/C5TA03524D

    26. [26]

      Czerw R, Terrones M, Charlier J C, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan P M, Blau W, Rühle M, Carroll D L. Identification of Electron Donor States in N-Doped Carbon Nanotubes[J]. Nano Lett., 2001,1(9):457-460. doi: 10.1021/nl015549q

    27. [27]

      Fan Y F, Zhuang C F, Li S J, Wang Y, Zou X Q, Liu X T, Huang W M, Zhu G S. Efficient Single-Atom Ni for Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol[J]. J. Mater. Chem. A, 2021,9(2):1110-1118. doi: 10.1039/D0TA10838C

    28. [28]

      Panagiotopoulou P, Martin N, Vlachos D G. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts[J]. ChemSusChem, 2015,8(12):2046-2054. doi: 10.1002/cssc.201500212

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(6)
  • Abstract views(613)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return