Citation: Ya-Qi GUO, Ai-Ling FAN, Wei PANG, Deng-Kui XIE, Dian-Chao GAO. Preparation of Plate NiWP@Polyhedral NiWO Electrocatalyst for Hydrogen Evolution[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1283-1290. doi: 10.11862/CJIC.2022.131 shu

Preparation of Plate NiWP@Polyhedral NiWO Electrocatalyst for Hydrogen Evolution

  • Corresponding author: Ai-Ling FAN, fanailing@bjut.edu.cn
  • Received Date: 8 December 2021
    Revised Date: 11 May 2022

Figures(5)

  • Here, polyhedral nickel-tungsten oxide (NiWO) precursor was prepared on nickel foam via the one-step hydrothermal method, and then it was phosphatized at different temperatures to obtain the plate nickel-tungsten phosphide (NiWP)@polyhedral NiWO composite electrocatalyst. The results showed that optimizing phosphating temperature can significantly improve the electrocatalytic hydrogen evolution performance of the plate NiWP@polyhedron NiWO. When the phosphating temperature was 450℃, it exhibited excellent hydrogen evolution catalyt-ic activity with an overpotential of 115 mV to achieve 10 mA·cm-2. The Tafel slope was 85 mV·dec-1, which was similar to Pt. In addition, the 24 h long-term stability test showed that the electrocatalyst had good stability. This excellent performance can be attributed to the fact that the plate NiWP@polyhedral NiWO composite structure increases the catalytic active area, reduces the charge/mass transfer resistance, accelerates the electron transfer rate, and increases the reaction kinetics performance.
  • 加载中
    1. [1]

      Kang Q L, Li M Y, Shi J W, Lu Q Y, Gao F. A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High -Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting[J]. ACS Appl. Mater. Interfaces, 2020,12(17):19447-19456. doi: 10.1021/acsami.0c00795

    2. [2]

      Yue Q, Sun J, Chen S, Zhou Y, Li H J, Chen Y, Zhang R Y, Wei G F, Kang Y J. Hierarchical Mesoporous Mxene-NiCoP Electrocatalyst for Water-Splitting[J]. ACS Appl. Mater. Interfaces, 2020,12(16):18570-18577. doi: 10.1021/acsami.0c01303

    3. [3]

      Shen G F, Ru M Y, Du W, Zhu X, Zhong Q R, Chen Y L, Shen H Z, Yun X, Meng W J, Liu J F, Cheng J Y, Hu J Y, Guan D A, Tao S. Impacts of Air Pollutants from Rural Chinese Households under the Rapid Residential Energy Transition[J]. Nat. Commun., 2019,10(1):1-8. doi: 10.1038/s41467-018-07882-8

    4. [4]

      Li X, Zhao L L, Yu J Y, Liu X Y, Zhang X L, Liu H, Zhou W J. Water Splitting: From Electrode to Green Energy System[J]. Nano-Micro Lett., 2020,12(10):107-135.

    5. [5]

      GUO B W, LUO D, ZHOU H J. Recent Advances in Renewable Energy Electrolysis Hydrogen Production Technology and Related Electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021,40(6):2933-2951.  

    6. [6]

      LUO C X. Present Status of Power-to-Hydrogen Technology World-wide Using Renewable Energy[J]. Sino-Global Energy, 2017,22(8):25-32.  

    7. [7]

      Zhiznin S Z, Vassilev S, Gusev A L. Economics of Secondary Renewable Energy Sources with Hydrogen Generation[J]. Int. J. Hydrogen Energy, 2019,44(23):11385-11393. doi: 10.1016/j.ijhydene.2019.03.072

    8. [8]

      Zhou X B, Liao X B, Pan X L, Yan M Y, He L, Wu P J, Zhao Y, Luo W, Mai L Q. Unveiling the Role of Surface P-O Group in P-Doped Co3O4 for Electrocatalytic Oxygen Evolution by On-Chip Micro-Device[J]. Nano Energy, 2021,83(1)105748.

    9. [9]

      Wang M, Yang H, Shi J N, Chen Y F, Zhou Y, Wang L G, Di S J, Zhao X, Zhong J, Cheng T, Zhou W, Li Y G. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis[J]. Angew. Chem. Int. Ed., 2021,133(11):5835-5841. doi: 10.1002/ange.202013047

    10. [10]

      Chen S, Zhao J K, Su H Y, Li H L, Wang H L, Hu Z P, Bao J, Zeng J. Pd-Pt Tesseracts for the Oxygen Reduction Reaction[J]. J. Am. Chem. Soc., 2021,143(1):496-503. doi: 10.1021/jacs.0c12282

    11. [11]

      Li W, Chu X S, Wang F, Dang Y Y, Liu X Y, Wang X C, Wang C Y. Enhanced Cocatalyst-Support Interaction and Promoted Electron Transfer of 3D Porous g-C3N4/GO-M (Au, Pd, Pt) Composite Catalysts for Hydrogen Evolution[J]. Appl. Catal. B, 2021,288120034. doi: 10.1016/j.apcatb.2021.120034

    12. [12]

      Xu K, Sun Y Q, Sun Y M, Zhang Y Q, Jia G C, Zhang Q H, Gu L, Li S Z, Li Y, Fan H J. Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution[J]. ACS Energy Lett., 2018,3(11):2750-2756. doi: 10.1021/acsenergylett.8b01893

    13. [13]

      Zhai Y Y, Ren X R, Yan J Q, Liu S Z. High Density and Unit Activity Integrated in Amorphous Catalysts for Electrochemical Water Splitting[J]. Small Struct., 2021,2(4)2000096. doi: 10.1002/sstr.202000096

    14. [14]

      Li Y, Dong Z H, Jiao L F. Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis[J]. Adv. Energy Mater., 2020,10(11)1902104. doi: 10.1002/aenm.201902104

    15. [15]

      Shi Y M, Zhang B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction[J]. Chem. Soc. Rev., 2016,45(6):1529-1541. doi: 10.1039/C5CS00434A

    16. [16]

      Hughes J P, Clipsham J, Chavushoglu H, Rowley-Neale S J, Banks C E. Polymer Electrolyte Electrolysis: A Review of the Activity and Stability of Non-precious Metal Hydrogen Evolution Reaction and Oxygen Evolution Reaction Catalysts[J]. Renewable Sustainable Energy Rev., 2021,139110709. doi: 10.1016/j.rser.2021.110709

    17. [17]

      Xiao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X. Molybdenum Phosphide as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction[J]. Energy Environ. Sci., 2014,7(8):2624-2629. doi: 10.1039/C4EE00957F

    18. [18]

      Wang J S, Xin S S, Xiao Y, Zhang Z F, Li Z M, Zhang W, Li C J, Bao R, Peng J, Yi J H, Chou S L. Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Ni-Based Alloy for Highly-Efficient Alkaline Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2022. doi: 10.1002/anie.202202518

    19. [19]

      WU A R, CHEN Y H, WANG X X, ZHOU W Y, HE J W, WANG J S, LI H Y. Pt/TiO2 Nanotubes Electrode: Preparation by Electroplating Method and Electrocatalytic Hydrogen Evolution Performance[J]. Chinese J. Inorg. Chem., 2022,38(2):227-236.  

    20. [20]

      Pang W, Fan A L, Guo Y Q, Xie D K, Gao D C. NiCoP with Dandelion-like Arrays Anchored on Nanowires for Electrocatalytic Overall Water Splitting[J]. ACS Omega, 2021,6(41):26822-26828. doi: 10.1021/acsomega.1c01650

    21. [21]

      Wu L, Pu Z H, Tu Z K, Amiinu I S, Liu S J, Wang P Y, Mu S C. Integrated Design and Construction of WP/W Nanorod Array Electrodes toward Efficient Hydrogen Evolution Reaction[J]. Chem. Eng. J., 2017,327:705-712. doi: 10.1016/j.cej.2017.06.152

    22. [22]

      Lloyd M T, Olson D C, Lu P, Fang E, Moore D L, White M S, Reese M O, Ginley D S, Hsu J W. Impact of Contact Evolution on the Shelf Life of Organic Solar Cells[J]. J. Mater. Chem., 2009,19(41):7638-7642. doi: 10.1039/b910213b

    23. [23]

      Batchellor A S, Boettcher S W. Pulse-Electrodeposited Ni-Fe (Oxy) hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings[J]. ACS Catal., 2015,5(11):6680-6689. doi: 10.1021/acscatal.5b01551

    24. [24]

      Wang X D, Xu Y F, Rao H S, Xu W J, Chen H Y, Zhang W X, Kuang D B, Su C Y. Novel Porous Molybdenum Tungsten Phosphide Hybrid Nanosheets on Carbon Cloth for Efficient Hydrogen Evolution[J]. Energy Environ. Sci., 2016,9(4):1468-1475. doi: 10.1039/C5EE03801D

    25. [25]

      Du H T, Xia L, Zhu S Y, Qu F, Qu F L. Al-Doped Ni2P Nanosheet Array: A Superior and Durable Electrocatalyst for Alkaline Hydrogen Evolution[J]. Chem. Commun., 2018,54(23):2894-2897. doi: 10.1039/C7CC09445K

    26. [26]

      Liu Z W, Huo X T, Xi K, Li P, Yue L N, Huang M, Suo G Q, Xu L, Wang W, Qu X H. Thickness Controllable and Mass-Produced WC@C@Pt Hybrid for Efficient Hydrogen Production[J]. Energy Storage Mater., 2018,10:268-274. doi: 10.1016/j.ensm.2017.06.011

    27. [27]

      Zhang J T, Zhang Z, Ji Y F, Yang J D, Fan K, Ma X Z, Wang C, Shu R Y, Chen Y. Surface Engineering Induced Hierarchical Porous Ni12P5-Ni2P Polymorphs Catalyst for Efficient Wide pH Hydrogen Production[J]. Appl. Catal. B, 2021,282119609. doi: 10.1016/j.apcatb.2020.119609

    28. [28]

      Liu K W, Zhang C L, Sun Y D, Zhang G H, Shen X C, Zou F, Zhang H C, Wu Z W, Wegener E C, Taubert C J, Miller J T, Peng Z M, Zhu Y. High -Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction[J]. ACS Nano, 2018,12(1):158-167. doi: 10.1021/acsnano.7b04646

    29. [29]

      Li J Y, Li J, Zhou X M, Xia Z M, Gao W, Ma Y Y, Qu Y Q. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting[J]. ACS Appl. Mater. Interfaces, 2016,8(17):10826-10834. doi: 10.1021/acsami.6b00731

    30. [30]

      Liu B C, Cao B, Cheng Y, Jing P, Zhao J, Gao R, O'mullane A, Zhu H Y, Liu K Q, Sun X L, Du Y P, Zhang J. Ultrafine CoP/Co2P Nano-rods Encapsulated in Janus/Twins-Type Honeycomb 3D Nitrogen-Doped Carbon Nanosheets for Efficient Hydrogen Evolution[J]. iScience, 2020,23(7)101264. doi: 10.1016/j.isci.2020.101264

    31. [31]

      Gou W Y, Zhang M K, Zou Y, Zhou X M, Qu Y Q. Iridium-Chromium Oxide Nanowires as Highly Performed OER Catalysts in Acidic Media[J]. ChemCatChem, 2019,11(24):6008-6014. doi: 10.1002/cctc.201901411

    32. [32]

      Tong R, Qu Y J, Zhu Q, Wang X N, Lu Y H, Wang S P, Pan H. Combined Experimental and Theoretical Assessment of WXy (X=C, N, S, P) for Hydrogen Evolution Reaction[J]. ACS Appl. Energy Mater., 2020,3(1):1082-1088. doi: 10.1021/acsaem.9b02114

    33. [33]

      Jiang R, Deng B W, Pi L, Hu L Y, Chen D, Dou Y P, Mao X H, Wang D H. Molten Electrolyte-Modulated Electrosynthesis of Multianion Mo-Based Lamellar Nanohybrids Derived from Natural Minerals for Boosting Hydrogen Evolution[J]. ACS Appl. Mater. Interfaces, 2020,12(52):57870-57880. doi: 10.1021/acsami.0c17137

    34. [34]

      Yu M Z, Wang Z Y, Liu J S, Sun F, Yang P J, Qiu J S. A Hierarchically Porous and Hydrophilic 3D Nickel-Iron/MXene Electrode for Accelerating Oxygen and Hydrogen Evolution at High Current Densities[J]. Nano Energy, 2019,63103880. doi: 10.1016/j.nanoen.2019.103880

    35. [35]

      Zhang L, Zhang R, Ge R X, Ren X, Hao S, Xie F Y, Qu F L, Liu Z A, Du G, Asiri A M, Zheng B Z, Sun X P. Facilitating Active Species Generation by Amorphous NiFe-Bi Layer Formation on NiFe-LDH Nanoarray for Efficient Electrocatalytic Oxygen Evolution at Alkaline pH[J]. Chem. Eur. J., 2017,23(48):11499-11503. doi: 10.1002/chem.201702745

    36. [36]

      Liu J L, Zheng Y, Jiao Y, Wang Z Y, Lu Z G, Vasileff A, Qiao S Z. NiO as a Bifunctional Promoter for RuO2 toward Superior Overall Water Splitting[J]. Small, 2018,14(16)1704073. doi: 10.1002/smll.201704073

    37. [37]

      Zhao Y Q, Ling T, Chen S M, Jin B, Vasileff A, Jiao Y, Song L, Luo J, Qiao S Z. Non-metal Single Iodine Atom Electrocatalysts for the Hydrogen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2019,58(35):12252-12257. doi: 10.1002/anie.201905554

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(1)
  • Abstract views(678)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return