Electrolyte Modulation Strategies for Rechargeable Zn Batteries
- Corresponding author: Jiang ZHOU, zhou_jiang@csu.edu.cn
Citation: Ming-Ming HAN, Ji-Wu HUANG, Xian-Wen WU, Shu-Quan LIANG, Jiang ZHOU. Electrolyte Modulation Strategies for Rechargeable Zn Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1451-1469. doi: 10.11862/CJIC.2022.130
Han M M, Qin L P, Liu Z X, Zhang L X, Li X K, Lu B A, Huang J W, Liang S Q, Zhou J. Reaction Mechanisms and Optimization Strategies of Manganese‐Based Materials for Aqueous Zinc Batteries[J]. Mater. Today Energy, 2021,20100626. doi: 10.1016/j.mtener.2020.100626
Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry[J]. Chem. Rev., 2020,120:7795-7866. doi: 10.1021/acs.chemrev.9b00628
Huang J H, Guo Z W, Ma Y Y, Bin D, Wang Y G, Xia Y Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes[J]. Small Methods, 2019,31800272. doi: 10.1002/smtd.201800272
Wang Y G, Yi J, Xia Y Y. Recent Progress in Aqueous Lithium‐Ion Batteries[J]. Adv. Energy Mater., 2012,2:830-840. doi: 10.1002/aenm.201200065
Muldoon J, Bucur C B, Gregory T. Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond[J]. Chem. Rev., 2014,114:11683-11720. doi: 10.1021/cr500049y
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the Development of Advanced Li‐Ion Batteries[J]. Energy Environ Sci., 2011,4:3243-3262. doi: 10.1039/c1ee01598b
Zhong M E, Guan J D, Feng Q J, Wu X W, Xiao Z B, Zhang W, Tong S, Zhou N, Gong D X. Accelerated Polysulfide Redox Kinetics Revealed by Ternary Sandwich‐Type S@Co/N‐doped Carbon Nanosheet for High‐Performance Lithium‐Sulfur Batteries[J]. Carbon, 2018,128:86-96. doi: 10.1016/j.carbon.2017.11.084
Massé R C, Uchaker E, Cao G Z. Beyond Li‐Ion: Electrode Materials for Sodium and Magnesium‐Ion Batteries[J]. Sci. China Mater., 2015,58:715-766.
Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K. Aqueous Rechargeable Li and Na Ion Batteries[J]. Chem. Rev., 2014,114:11788-11827. doi: 10.1021/cr500232y
Wang J, Liu G Y, Fan K L, Zhao D, Liu B B, Jiang J B, Qian D, Yang C M, Li J H. N‐Doped Carbon Coated Anatase TiO2 Nanoparticles as Superior Na‐Ion Battery Anodes[J]. J. Colloid Interface Sci., 2018,517:134-143. doi: 10.1016/j.jcis.2018.02.001
WANG F H, LIU H B. Research Progress of Zinc Anode Materials for Aqueous Zinc Ion Recharge Battery[J]. Chinese J. Inorg. Chem., 2019,35:1999-2012. doi: 10.11862/CJIC.2019.239
Li T C, Fang D L, Zhang J T, Pam M E, Leong Z Y, Yu J Z, Li X L, Yan D, Yang H Y. Recent Progress in Aqueous Zinc‐Ion Batteries: A Deep Insight into Zinc Metal Anodes[J]. J. Mater. Chem. A, 2021,9:6013-6028. doi: 10.1039/D0TA09111A
Song M, Tan H, Chao D L, Fan H J. Recent Advances in Zn‐Ion Batteries[J]. Adv. Funct. Mater., 2018,281802564. doi: 10.1002/adfm.201802564
Fang G Z, Zhou J, Pan A Q, Liang S Q. Recent Advances in Aqueous Zinc‐Ion Batteries[J]. ACS Energy Lett., 2018,3:2480-2501. doi: 10.1021/acsenergylett.8b01426
Zhu K Y, Wu T, Sun S C, Wen Y T, Huang K. Electrode Materials for Practical Rechargeable Aqueous Zn‐Ion Batteries: Challenges and Opportunities[J]. ChemElectroChem, 2020,7:2714-2734. doi: 10.1002/celc.202000472
Zhang T S, Tang Y, Guo S, Cao X X, Pan A Q, Fang G Z, Zhou J, Liang S Q. Fundamentals and Perspectives in Developing Zinc‐Ion Battery Electrolytes: A Comprehensive Review[J]. Energy Environ. Sci., 2020,13:4625-4665. doi: 10.1039/D0EE02620D
Guo S, Qin L P, Zhang T S, Zhou M, Zhou J, Fang G Z, Liang S Q. Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc‐Ion Batteries[J]. Energy Storage Mater., 2021,34:545-562. doi: 10.1016/j.ensm.2020.10.019
Zhang N, Cheng F Y, Liu Y C, Zhao Q, Lei K X, Chen C C, Liu X S, Chen J. Cation‐deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn‐Ion Battery[J]. J. Am. Chem. Soc., 2016,138:12894-12901. doi: 10.1021/jacs.6b05958
Yan H B, Li S M, Nan Y, Yang S B, Li B. Ultrafast Zinc‐Ion‐Conductor Interface toward High‐Rate and Stable Zinc Metal Batteries[J]. Adv. Energy Mater., 2021,112100186. doi: 10.1002/aenm.202100186
Chen J W, Vatamanu J, Xing L D, Borodin O, Chen H Y, Guan X C, Liu X, Xu K, Li W S. Improving Electrochemical Stability and Low‐Temperature Performance with Water/Acetonitrile Hybrid Electrolytes[J]. Adv. Energy Mater., 2020,101902654. doi: 10.1002/aenm.201902654
Zhang X Y, Lv R J, Tang W J, Li G J, Wang A X, Dong A P, Liu X J, Luo J Y. Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries[J]. Adv. Funct. Mater., 2020,302004187. doi: 10.1002/adfm.202004187
Yu Y X, Xu W, Liu X Q, Lu X H. Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zinc‐Ion Batteries: Recent Progress and Future Perspectives[J]. Adv. Sustainable Syst., 2020,42000082. doi: 10.1002/adsu.202000082
WU X W, LONG F N, XIANG Y H, JIANG J B, WU J H, XIONG L Z, ZHANG Q B. Research Progress of Anode Materials for Zinc‐Based Aqueous Battery in a Neutral or Weak Acid System[J]. Prog. Chem., 2021,33:1983-2001.
Yang W H, Du X F, Zhao J W, Chen Z, Li J J, Xie J, Zhang Y J, Cui Z L, Kong Q Y, Zhao Z M, Wang C G, Zhang Q C, Cui G L. Hydrated Eutectic Electrolytes with Ligand‐Oriented Solvation Shells for Long‐Cycling Zinc‐Organic Batteries[J]. Joule, 2020,4:1557-1574. doi: 10.1016/j.joule.2020.05.018
Qiu H Y, Du X F, Zhao J W, Wang Y T, Ju J W, Chen Z, Hu Z L, Yan D P, Zhou X H, Cui G L. Zinc Anode‐Compatible In‑Situ Solid Electrolyte Interphase via Cation Solvation Modulation[J]. Nat. Commun., 2019,105374. doi: 10.1038/s41467-019-13436-3
Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Highly Reversible Zinc Metal Anode for Aqueous Batteries[J]. Nat. Mater., 2018,17:543-549. doi: 10.1038/s41563-018-0063-z
Hao J N, Yuan L B, Ye C, Chao D L, Davey K, Guo Z P, Qiao S Z. Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low‐Cost Antisolvents[J]. Angew. Chem. Int. Ed., 2021,60:7366-7375. doi: 10.1002/anie.202016531
Zhu Y P, Yin J, Zheng X L, Emwas A H, Lei Y J, Mohammed O F, Cui Y, Alshareef H N. Concentrated Dual‐Cation Electrolyte Strategy for Aqueous Zinc‐Ion Batteries[J]. Energy Environ. Sci., 2021,14:4463-4473. doi: 10.1039/D1EE01472B
Xing Z Y, Xu G F, Xie X S, Chen M J, Lu B A, Zhou J, Liang S Q. Highly Reversible Zinc‐Ion Battery Enabled by Suppressing Vanadium Dissolution through Inorganic Zn2+ Conductor Electrolyte[J]. Nano Energy, 2021,90106621. doi: 10.1016/j.nanoen.2021.106621
Liu Z X, Wang D H, Tang Z J, Liang G J, Yang Q, Li H F, Ma L T, Mo F N, Zhi C Y. A Mechanically Durable and Device‐Level Tough Zn‐MnO2 Battery with High Flexibility[J]. Energy Storage Mater., 2019,23:636-645. doi: 10.1016/j.ensm.2019.03.007
Gao J W, Xie X S, Liang S Q, Lu B A, Zhou J. Inorganic Colloidal Electrolyte for Highly Robust Zinc‐Ion Batteries[J]. Nano ‑ Micro Lett., 2021,1369. doi: 10.1007/s40820-021-00595-6
Zhang S J, Hao J N, Luo D, Zhang P F, Zhang B K, Davey K, Lin Z, Qiao S Z. Dual‐Function Electrolyte Additive for Highly Reversible Zn Anode[J]. Adv. Energy Mater., 2021,112102010. doi: 10.1002/aenm.202102010
Yang H J, Qiao Y, Chang Z, Deng H, Zhu X Y, Zhu R J, Xiong Z T, He P, Zhou H S. Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery[J]. Adv. Mater., 2021,332102415. doi: 10.1002/adma.202102415
ZHOU S H, WU X W, XIANG Y H, ZHU L, LIU Z X, Zhao C X. Manganese‐Based Cathode Materials for Aqueous Zinc Ion Batteries[J]. Prog. Chem., 2020,33:649-669.
Wan F, Niu Z Q. Design Strategies for Vanadium‐Based Aqueous Zinc‐Ion Batteries[J]. Angew. Chem. Int. Ed., 2019,58:16358-16367. doi: 10.1002/anie.201903941
Yang S N, Zhang M S, Wu X W, Wu X S, Zeng F H, Li Y T, Duan S Y, Fan D H, Yang Y, Wu X M. The Excellent Electrochemical Performances of ZnMn2O4/Mn2O3: The Composite Cathode Material for Potential Aqueous Zinc Ion Batteries[J]. J. Electroanal. Chem., 2019,832:69-74. doi: 10.1016/j.jelechem.2018.10.051
Guo X, Fang G Z, Zhang W Y, Zhou J, Shan L T, Wang L B, Wang C, Lin T Q, Tang Y, Liang S Q. Mechanistic Insights of Zn2+ Storage in Sodium Vanadates[J]. Adv. Energy Mater., 2018,81801819. doi: 10.1002/aenm.201801819
Tang B Y, Fang G Z, Zhou J, Wang L B, Lei Y P, Wang C, Lin T Q, Tang Y, Liang S Q. Potassium Vanadates with Stable Structure and Fast Ion Diffusion Channel as Cathode for Rechargeable Aqueous Zinc‐Ion Batteries[J]. Nano Energy, 2018,51:579-587. doi: 10.1016/j.nanoen.2018.07.014
Tang B Y, Zhou J, Fang G Z, Liu F, Zhu C Y, Wang C, Pan A Q, Liang S Q. Engineering the Interplanar Spacing of Ammonium Vanadates as a High‐Performance Aqueous Zinc‐Ion Battery Cathode[J]. J. Mater. Chem. A, 2019,7:940-945. doi: 10.1039/C8TA09338E
Shan L T, Yang Y Q, Zhang W Y, Chen H J, Fang G Z, Zhou J, Liang S Q. Observation of Combination Displacement/Intercalation Reaction in Aqueous Zinc‐Ion Battery[J]. Energy Storage Mater., 2019,18:10-14. doi: 10.1016/j.ensm.2018.08.008
Yang Y Q, Tang Y, Fang G Z, Shan L T, Guo J S, Zhang W Y, Wang C, Wang L B, Zhou J, Liang S Q. Li+ Intercalated V2O5·nH2O with Enlarged Layer Spacing and Fast Ion Diffusion as an Aqueous Zinc‐Ion Battery Cathode[J]. Energy Environ. Sci., 2018,11:3157-3162. doi: 10.1039/C8EE01651H
Shan L T, Zhou J, Han M M, Fang G Z, Cao X X, Wu X W, Liang S Q. Reversible Zn‐Driven Reduction Displacement Reaction in Aqueous Zinc‐Ion Battery[J]. J. Mater. Chem. A, 2019,7:7355-7359. doi: 10.1039/C9TA00125E
Han M M, Huang J W, Liang S Q, Shan L T, Xie X S, Yi Z J, Wang Y R, Guo S, Zhou J. Oxygen Defects in β‐MnO2 Enabling High‐Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery[J]. iScience, 2020,23100797. doi: 10.1016/j.isci.2019.100797
Zhu C Y, Fang G Z, Zhou J, Guo J H, Wang Z Q, Wang C, Li J Y, Tang Y, Liang S Q. Binder‐Free Stainless Steel@Mn3O4 Nanoflower Composite: A High‐Activity Aqueous Zinc‐Ion Battery Cathode with High‐Capacity and Long‐Cycle‐Life[J]. J. Mater. Chem. A, 2018,6:9677-9683. doi: 10.1039/C8TA01198B
Zhu C Y, Fang G Z, Liang S Q, Chen Z X, Wang Z Q, Ma J Y, Wang H, Tang B Y, Zheng X S, Zhou J. Electrochemically Induced Cationic Defect in MnO Intercalation Cathode for Aqueous Zinc‐Ion Battery[J]. Energy Storage Mater., 2019,24:394-401.
Fang G Z, Zhu C Y, Chen M H, Zhou J, Tang B Y, Cao X X, Zheng X S, Pan A Q, Liang S Q. Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High‐Energy Density and Durable Aqueous Zinc‐Ion Battery[J]. Adv. Funct. Mater., 2019,291808375. doi: 10.1002/adfm.201808375
Zhong Y J, Xu X M, Veder J P, Shao Z P. Self‐Recovery Chemistry and Cobalt‐Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc‐Ion Batteries[J]. iScience, 2020,23100943. doi: 10.1016/j.isci.2020.100943
Su L J, Liu L Y, Liu B, Meng J N, Yan X B. Revealing the Impact of Oxygen Dissolved in Electrolytes on Aqueous Zinc‐Ion Batteries[J]. iScience, 2020,23100995. doi: 10.1016/j.isci.2020.100995
Zhao Y L, Zhu Y H, Zhang X B. Challenges and Perspectives for Manganese‐Based Oxides for Advanced Aqueous Zinc‐Ion Batteries[J]. InfoMat, 2020,2:237-260. doi: 10.1002/inf2.12042
Wan F, Zhang L L, Dai X, Wang X, Niu Z Q, Chen J. Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers[J]. Nat. Commun., 2018,91656. doi: 10.1038/s41467-018-04060-8
Li B, Xue J, Han C, Liu N, Ma K X, Zhang R C, Wu X W, Dai L, Wang L, He Z X. A Hafnium Oxide‐Coated Dendrite‐Free Zinc Anode for Rechargeable Aqueous Zinc‐Ion Batteries[J]. J. Colloid Interface Sci., 2021,599:467-475. doi: 10.1016/j.jcis.2021.04.113
Wang T T, Li C P, Xie X S, Lu B A, He Z X, Liang S Q, Zhou J. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives[J]. ACS Nano, 2020,14:16321-16347. doi: 10.1021/acsnano.0c07041
ZHOU J, SHAN L T, TANG B Y, LIANG S Q. Development and Challenges of Aqueous Rechargeable Zinc Batteries[J]. Chin. Sci. Bull., 2020,65:3562-3584.
Xue P, Guo C, Wang N Y, Zhu K P, Jing S, Kong S, Zhang X J, Li L, Li H P, Feng Y B, Gong W B, Li Q L. Synergistic Manipulation of Zn2+ Ion Flux and Nucleation Induction Effect Enabled by 3D Hollow SiO2/TiO2/Carbon Fiber for Long‐Lifespan and Dendrite‐Free Zn‐Metal Composite Anodes[J]. Adv. Funct. Mater., 2021,312106417. doi: 10.1002/adfm.202106417
Xie X S, Liang S Q, Gao J W, Guo S, Guo J B, Wang C, Xu G Y, Wu X W, Chen G, Zhou J. Manipulating the Ion‐Transfer Kinetics and Interface Stability for High‐Performance Zinc Metal Anodes[J]. Energy Environ. Sci., 2020,13:503-510. doi: 10.1039/C9EE03545A
Wu B, Zhang G B, Yan M Y, Xiong T F, He P, He L, Xu X, Mai L Q. Graphene Scroll‐Coated α‐MnO2 Nanowires as High‐Performance Cathode Materials for Aqueous Zn‐Ion Battery[J]. Small, 2018,14e1703850. doi: 10.1002/smll.201703850
Shan L T, Wang Y R, Liang S Q, Tang B Y, Yang Y Q, Wang Z Q, Lu B A, Zhou J. Interfacial Adsorption‐Insertion Mechanism Induced by Phase Boundary toward Better Aqueous Zn‐Ion Battery[J]. InfoMat, 2021,3:1028-1036. doi: 10.1002/inf2.12223
Liu M Q, Zhao Q H, Liu H, Yang J L, Chen X, Yang L Y, Cui Y H, Huang W Y, Zhao W G, Song A, Wang Y T, Ding S X, Song Y L, Qian G Y, Chen H B, Pan F. Tuning Phase Evolution of β‐MnO2 during Microwave Hydrothermal Synthesis for High‐Performance Aqueous Zn Ion Battery[J]. Nano Energy, 2019,64103942. doi: 10.1016/j.nanoen.2019.103942
Fu Y Q, Wei Q L, Zhang G X, Wang X M, Zhang J H, Hu Y F, Wang D N, Zuin L, Zhou T, Wu Y C, Sun S H. High‐Performance Reversible Aqueous Zn‐Ion Battery Based on Porous MnOx Nanorods Coated by MOF‐Derived N‐Doped Carbon[J]. Adv. Energy Mater., 2018,81801445. doi: 10.1002/aenm.201801445
Zhou J H, Xie M, Wu F, Mei Y, Hao Y T, Huang R L, Wei G L, Liu A N, Li L, Chen R J. Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn‐Ion Batteries[J]. Adv. Mater., 2021,34e2101649.
Zhao Z M, Zhao J W, Hu Z L, Li J D, Li J J, Zhang Y J, Wang C, Cui G L. Long‐Life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener‐Inspired Interphase[J]. Energy Environ. Sci., 2019,12:1938-1949. doi: 10.1039/C9EE00596J
Cao L S, Li D, Soto F A, Ponce V, Zhang B, Ma L, Deng T, Seminario J M, Hu E, Yang X Q, Balbuena P B, Wang C S. Highly Reversible Aqueous Zinc Batteries Enabled by Zincophilic‐Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes[J]. Angew. Chem. Int. Ed., 2021,60:18845-18851. doi: 10.1002/anie.202107378
Zhang Y M, Howe J D, Ben‐Yoseph S, Wu Y T, Liu N. Unveiling the Origin of Alloy‐Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries[J]. ACS Energy Lett., 2021,6:404-412. doi: 10.1021/acsenergylett.0c02343
Shi X D, Xu G F, Liang S Q, Li C P, Guo S, Xie X S, Ma X M, Zhou J. Homogeneous Deposition of Zinc on Three‐Dimensional Porous Copper Foam as a Superior Zinc Metal Anode[J]. ACS Sustainable Chem. Eng., 2019,7:17737-17746. doi: 10.1021/acssuschemeng.9b04085
Bayaguud A, Luo X, Fu Y P, Zhu C B. Cationic Surfactant‐Type Electrolyte Additive Enables Three‐Dimensional Dendrite‐Free Zinc Anode for Stable Zinc‐Ion Batteries[J]. ACS Energy Lett., 2020,5:3012-3020. doi: 10.1021/acsenergylett.0c01792
Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries[J]. Adv. Energy Mater., 2018,81801090. doi: 10.1002/aenm.201801090
Deng C B, Xie X S, Han J W, Tang Y, Gao J W, Liu C X, Shi X D, Zhou J, Liang S Q. A Sieve‐Functional and Uniform‐Porous Kaolin Layer toward Stable Zinc Metal Anode[J]. Adv. Funct. Mater., 2020,302000599. doi: 10.1002/adfm.202000599
Deng C B, Xie X S, Han J W, Lu B A, Liang S Q, Zhou J. Stabilization of Zn Metal Anode through Surface Reconstruction of a Cerium‐Based Conversion Film[J]. Adv. Funct. Mater., 2021,312103227. doi: 10.1002/adfm.202103227
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. "Water‐in‐Salt"Electrolyte Enables High‐Voltage Aqueous Lithium‐Ion Chemistries[J]. Science, 2015,350:938-943. doi: 10.1126/science.aab1595
Zhang C, Holoubek J, Wu X Y, Daniyar A, Zhu L D, Chen C, Leonard D P, Rodríguez‐Pérez I A, Jiang J X, Fang C, Ji X L. A ZnCl2 Waterin‐salt Electrolyte for a Reversible Zn Metal Anode[J]. Chem. Commun., 2018,54:14097-14099. doi: 10.1039/C8CC07730D
Zhang C, Shin W, Zhu L, Chen C, Neuefeind J C, Xu Y, Allec S I, Liu C, Wei Z, Daniyar A, Jiang J X, Fang C, Greaney P A, Ji X. The Electrolyte Comprising More Robust Water and Superhalides Transforms Zn‐Metal Anode Reversibly and Dendrite‐Free[J]. Carbon Energy, 2020,3:339-348.
Ni Q, Jiang H, Sandstrom S, Bai Y, Ren H X, Wu X Y, Guo Q B, Yu D X, Wu C, Ji X L. A Na3V2(PO4)2O1.6F1.4 Cathode of Zn‐Ion Battery Enabled by a Water‐in‐Bisalt Electrolyte[J]. Adv. Funct. Mater., 2020,302003511. doi: 10.1002/adfm.202003511
Liu C X, Xie X S, Lu B A, Zhou J, Liang S Q. Electrolyte Strategies Toward Better Zinc‐Ion Batteries[J]. ACS Energy Lett., 2021,6:1015-1033. doi: 10.1021/acsenergylett.0c02684
Zeng Y X, Zhang X Y, Meng Y, Yu M H, Yi J N, Wu Y Q, Lu X H, Tong Y. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi‐Solid‐State Zn‐MnO2 Battery[J]. Adv. Mater., 2017,291700274. doi: 10.1002/adma.201700274
Zhang S L, Yu N S, Zeng S, Zhou S S, Chen M H, Di J T, Li Q W. An Adaptive and Stable Bio‐electrolyte for Rechargeable Zn‐Ion Batteries[J]. J. Mater. Chem. A, 2018,6:12237-12243. doi: 10.1039/C8TA04298E
Zhang Q C, Li C W, Li Q L, Pan Z H, Sun J, Zhou Z Y, He B, Man P, Xie L Y, Kang L X, Wang X N, Yang J, Zhang T, Shum P P, Li Q W, Yao Y Q, Wei L. Flexible and High‐Voltage Coaxial‐Fiber Aqueous Rechargeable Zinc‐Ion Battery[J]. Nano Lett., 2019,19:4035-4042. doi: 10.1021/acs.nanolett.9b01403
Sun L, Yao Y Q, Dai L X, Jiao M L, Ding B F, Yu Q M, Tang J, Liu B L. Sustainable and High‐Performance Zn Dual‐Ion Batteries with a Hydrogel‐Based Water‐in‐Salt Electrolyte[J]. Energy Storage Mater., 2022,47187. doi: 10.1016/j.ensm.2022.02.012
Wang D H, Li H F, Liu Z X, Tang Z J, Liang G J, Mo F N, Yang Q, Ma L T, Zhi C Y. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte‐Based Flexible and Sewable High‐Performance Zn‐MnO2 Battery with Superior Shear Resistance[J]. Small, 2018,14e1803978. doi: 10.1002/smll.201803978
Chan C Y, Wang Z Q, Jia H, Ng P F, Chow L, Fei B. Recent Advances of Hydrogel Electrolytes in Flexible Energy Storage Devices[J]. J. Mater. Chem. A, 2021,9:2043-2069. doi: 10.1039/D0TA09500A
Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Flexible Zn‐Ion Batteries: Recent Progresses and Challenges[J]. Small, 2019,15e1804760. doi: 10.1002/smll.201804760
Lv Y Q, Xiao Y, Ma L T, Zhi C Y, Chen S M. Recent Advances in Electrolytes for"Beyond Aqueous"Zinc‐Ion Batteries[J]. Adv. Mater., 2021,34e2106409.
Mo F N, Chen Z, Liang G J, Wang D H, Zhao Y W, Li H F, Dong B B, Zhi C Y. Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn‐MnO2 Batteries with Superior Rate Capabilities[J]. Adv. Energy Mater., 2020,102000035. doi: 10.1002/aenm.202000035
Chen Z, Li X L, Wang D H, Yang Q, Ma L T, Huang Z D, Liang G J, Chen A, Guo Y, Dong B B, Huang X Y, Yang C, Zhi C Y. Grafted MXene/Polymer Electrolyte for High Performance Solid Zinc Batteries with Enhanced Shelf Life at Low/High Temperatures[J]. Energy Environ. Sci., 2021,14:3492-3501. doi: 10.1039/D1EE00409C
Li H F, Han C P, Huang Y, Huang Y, Zhu M S, Pei Z X, Xue Q, Wang Z F, Liu Z X, Tang Z J, Wang Y K, Kang F Y, Li B H, Zhi C Y. An Extremely Safe and Wearable Solid‐State Zinc Ion Battery Based on a Hierarchical Structured Polymer Electrolyte[J]. Energy Environ. Sci., 2018,11:941-951. doi: 10.1039/C7EE03232C
Tang Y, Liu C X, Zhu H R, Xie X S, Gao J W, Deng C B, Han M M, Liang S Q, Zhou J. Ion‐Confinement Effect Enabled by Gel Electrolyte for Highly Reversible Dendrite‐Free Zinc Metal Anode[J]. Energy Storage Mater., 2020,27:109-116. doi: 10.1016/j.ensm.2020.01.023
Li C P, Xie X S, Liu H, Wang P J, Deng C B, Lu B A, Zhou J, Liang S Q. Integrated'All‐in‐One'Strategy to Stabilize Zinc Anodes for High‐IPerformance Zinc‐Ion Batteries[J]. Nat. Sci. Rev., 2022,9nwab177. doi: 10.1093/nsr/nwab177
Wang M Q, Emre A E, Tung S, Gerber A, Wang D D, Huang Y D, Cecen V, Kotov N A. Biomimetic Solid‐State Zn2+ Electrolyte for Corrugated Structural Batteries[J]. ACS Nano, 2019,13:1107-1115.
Karan S, Sahu T B, Sahu M, Mahipal Y K, Agrawal R C. Investigations on Materials and Ion Transport Properties of Zn2+ Conducting Nano‐Composite Polymer Electrolytes (NCPEs): [(90PEO∶10Zn (CF3SO3)2)+xZnO][J]. Mater. Today Commun., 2017,13:269-274. doi: 10.1016/j.mtcomm.2017.10.009
Lin D C, Liu W, Liu Y Y, Lee H R, Hsu P C, Liu K, Cui Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)[J]. Nano Lett, 2016,16:459-465. doi: 10.1021/acs.nanolett.5b04117
Ma L T, Chen S M, Li N, Liu Z X, Tang Z J, Zapien J A, Chen S M, Fan J, Zhi C Y. Hydrogen‐Free and Dendrite‐Free All‐Solid‐State Zn‐Ion Batteries[J]. Adv. Mater., 2020,32e1908121. doi: 10.1002/adma.201908121
Xie X S, Fu H W, Fang Y, Lu B A, Zhou J, Liang S Q. Manipulating Ion Concentration to Boost Two‐Electron Mn4+/Mn2+ Redox Kinetics through a Colloid Electrolyte for High‐Capacity Zinc Batteries[J]. Adv. Energy Mater., 2021,122102393.
Yimin D, Niu L, Hui L, Zou J Q, Yu L P, Feng Q J. Cu‐Ni Alloy Catalyzed Electrochemical Carboxylation of Benzyl Bromide with Carbon Dioxide in Ionic Liquid 1‐Butyl‐3‐methylimidazolium Tetra‐fluoroborate[J]. Int. J. Electrochem. Sci., 2018,13:1084-1095.
Zhang Q H, Vigier K D O, Royer S, Jerome F. Deep Eutectic Solvents: Syntheses, Properties and Applications[J]. Chem. Soc. Rev., 2012,41:7108-7146. doi: 10.1039/c2cs35178a
Zhang C K, Zhang L Y, Ding Y, Guo X, Yu G H. Eutectic Electrolytes for High‐Energy‐Density Redox Flow Batteries[J]. ACS Energy Lett., 2018,3:2875-2883. doi: 10.1021/acsenergylett.8b01899
Kao‐Ian W, Pornprasertsuk R, Thamyongkit P, Maiyalagan T, Kheawhom S. Rechargeable Zinc‐Ion Battery Based on Choline Chloride‐Urea Deep Eutectic Solvent[J]. J. Electrochem. Soc., 2019,166:A1063-A1069. doi: 10.1149/2.0641906jes
Abbott A P, Barron J C, Frisch G, Ryder K S, Silva A F. The Effect of Additives on Zinc Electrodeposition from Deep Eutectic Solvents[J]. Electrochim. Acta, 2011,56:5272-5279. doi: 10.1016/j.electacta.2011.02.095
Zhao J W, Zhang J, Yang W H, Chen B B, Zhao Z M, Qiu H Y, Dong S M, Zhou X H, Cui G L, Chen L Q". Water‐in‐Deep Eutectic Solvent" Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries[J]. Nano Energy, 2019,57:625-634. doi: 10.1016/j.nanoen.2018.12.086
Shi J, Sun T, Bao J, Zheng S, Du H, Li L, Yuan X, Ma T, Tao Z. "Water‐in‐Deep Eutectic Solvent"Electrolytes for High‐Performance Aqueous Zn‐Ion Batteries[J]. Adv. Funct. Mater., 2021,312102035. doi: 10.1002/adfm.202102035
Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X T, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible Epitaxial Electrodeposition of Metals in Battery Anodes[J]. Science, 2019,366:645-648. doi: 10.1126/science.aax6873
Zhang K, Yan Z H, Chen J. Electrodeposition Accelerates Metal‐Based Batteries[J]. Joule, 2020,4:10-11. doi: 10.1016/j.joule.2019.12.012
Li G X, Liu Z, Huang Q Q, Gao Y, Regula M, Wang D W, Chen L Q, Wang D H. Stable Metal Battery Anodes Enabled by Polyethylenimine Sponge Hosts by Way of Electrokinetic Effects[J]. Nat. Energy, 2018,3:1076-1083. doi: 10.1038/s41560-018-0276-z
Wang P J, Xie X S, Xing Z Y, Chen X H, Fang G Z, Lu B A, Zhou J, Liang S Q, Fan H J. Mechanistic Insights of Mg2+‐Electrolyte Additive for High‐Energy and Long‐Life Zinc‐Ion Hybrid Capacitors[J]. Adv. Energy Mater., 2021,112101158. doi: 10.1002/aenm.202101158
Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F. Dendrite‐Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn‐Based Batteries[J]. Angew. Chem. Int. Ed., 2016,55:2889-2893. doi: 10.1002/anie.201509364
Li D, Cao L S, Deng T, Liu S F, Wang C S. Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries[J]. Angew. Chem. Int. Ed., 2021,60:13035-13041. doi: 10.1002/anie.202103390
Han D, Wang Z X, Lu H T, Li H, Cui C J, Zhang Z C, Sun R, Geng C N, Liang Q H, Guo X X, Mo Y B, Zhi X, Kang F Y, Weng Z, Yang Q H. A Self‐Regulated Interface toward Highly Reversible Aqueous Zinc Batteries[J]. Adv. Energy Mater., 2022,122102982. doi: 10.1002/aenm.202102982
Hou Z G, Zhang X Q, Li X N, Zhu Y C, Liang J W, Qian Y T. Sur‐factant Widens the Electrochemical Window of an Aqueous Electrolyte for Better Rechargeable Aqueous Sodium/Zinc Battery[J]. J. Mater. Chem. A, 2017,5:730-738. doi: 10.1039/C6TA08736A
Zhang Q, Luan J Y, Fu L, Wu S G, Tang Y G, Ji X B, Wang H Y. The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive[J]. Angew. Chem. Int. Ed., 2019,131:15841-15847.
Xu W N, Zhao K N, Huo W C, Wang Y Z, Yao G, Gu X, Cheng H W, Mai L Q, Hu C G, Wang X D. Diethyl Ether as Self‐Healing Electrolyte Additive Enabled Long‐Life Rechargeable Aqueous Zinc Ion Batteries[J]. Nano Energy, 2019,62:275-281. doi: 10.1016/j.nanoen.2019.05.042
Qin R Z, Wang Y T, Zhang M Z, Wang Y, Ding S X, Song A, Yi H C, Yang L Y, Song Y L, Cui Y H, Liu J, Wang Z Q, Li S N, Zhao Q H, Pan F. Tuning Zn2+ Coordination Environment to Suppress Dendrite Formation for High‐Performance Zn‐Ion Batteries[J]. Nano Energy, 2021,80105478. doi: 10.1016/j.nanoen.2020.105478
Dong Y, Miao L C, Ma G Q, Di S L, Wang Y Y, Wang L B, Xu J Z, Zhang N. Non‐concentrated Aqueous Electrolytes with Organic Solvent Additives for Stable Zinc Batteries[J]. Chem. Sci., 2021,12:5843-5852. doi: 10.1039/D0SC06734B
Cao L S, Li D, Hu E Y, Xu J J, Deng T, Ma L, Wang Y, Yang X Q, Wang C S. Solvation Structure Design for Aqueous Zn Metal Batteries[J]. J. Am. Chem. Soc., 2020,142:21404-21409. doi: 10.1021/jacs.0c09794
Sun P, Ma L, Zhou W H, Qiu M J, Wang Z L, Chao D L, Mai W J. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite‐Free Zn Ion Batteries Achieved by a Low‐Cost Glucose Additive[J]. Angew. Chem. Int. Ed., 2021,60:18247-18255. doi: 10.1002/anie.202105756
Li T C, Lim Y V, Li X L, Luo S Z, Lin C J, Fang D L, Xia S W, Wang Y, Yang H Y. A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage[J]. Adv. Energy Mater., 2022,122103231. doi: 10.1002/aenm.202103231
Wang B J, Zheng R, Yang W, Han X, Hou C Y, Zhang Q H, Li Y G, Li K R, Wang H Z. Synergistic Solvation and Interface Regulations of Eco‐friendly Silk Peptide Additive Enabling Stable Aqueous Zinc‐Ion Batteries[J]. Adv. Funct. Mater., 2022,322112693. doi: 10.1002/adfm.202112693
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037