Citation: Yu MA, Guang-Qi HU, Wei-Hao YE, Bao-Yan GUO, Xiao-Kai XU, Chao-Fan HU, Jian-Le ZHUANG, Ying-Liang LIU. Synthesis, Application, and Mechanism of Barium Sulfate Particle Size Modifiers C-N-CDs[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1317-1326. doi: 10.11862/CJIC.2022.127 shu

Synthesis, Application, and Mechanism of Barium Sulfate Particle Size Modifiers C-N-CDs

  • Corresponding author: Ying-Liang LIU, tliuyl@scau.edu.cn
  • Received Date: 29 January 2022
    Revised Date: 24 April 2022

Figures(10)

  • In this paper, carboxyl and amino-modified carbon dots (C-N-CDs) were prepared with citric acid and ethylenediamine by hydrothermal reaction, which have excellent particle size regulation of barium sulfate: the average particle size of BaSO4 particles prepared by the precipitation method can be reduced to 45.3 nm, which is smaller than the average particle size of BaSO4 particles prepared by traditional complexing agent ethylenediaminetetraace-tic acid (EDTA) regulation under the same conditions (73.7 nm). The as-prepared nano BaSO4 sample showed an excellent nano-toughening effect when added to polyvinyl alcohol (PVA) films. The chemical properties, surface electrical properties, and spatial site resistance of C-N-CDs were found to be important factors influencing the size of BaSO4 particles.
  • 加载中
    1. [1]

      SHANG F Y, HU F, SU X H. Present Status and Development Prospect of Precipitated Barium Sulfate Production in China[J]. Inorganic Chemicals Industry, 2015,47(1):1-4.  

    2. [2]

      MAN R L, LIU Y, YU J G. Preparation of Ultrafine Active Barite[J]. Journal of Central South University (Science and Technology), 2000,31(2):145-148.  

    3. [3]

      ZOU Y J, SHENG Y, ZHU D Q. Influencing Factors of Inorganic Rigid Particles Toughening Polypropylene[J]. Chinese Journal of Applied Chemistry, 2013,30(3):245-251.  

    4. [4]

      CHEN H Z, SUN Z L, ZHANG Y, ZHANG J. Research Progress in Modification and Application of Nano-sized Barium Sulfate[J]. Inorganic Chemicals Industry, 2019,51(11):6-12. doi: 10.11962/1006-4990.2019-0018

    5. [5]

      Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes[J]. ACS Nano, 2013,7(12):11234-11241. doi: 10.1021/nn405017q

    6. [6]

      Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization[J]. Adv. Mater., 2018,30(1)1704740. doi: 10.1002/adma.201704740

    7. [7]

      Hutton G A M, Reuillard B, Martindale B C M, Caputo C A, Lockwood C W J, Butt J N, Reisner E. Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes[J]. J. Am.Chem. Soc., 2016,138(51):16722-16730. doi: 10.1021/jacs.6b10146

    8. [8]

      Yu H J, Shi R, Zhao Y F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis[J]. Adv. Mater., 2016,28(43):9454-9477. doi: 10.1002/adma.201602581

    9. [9]

      Li H T, Sun C H, Ali M, Zhou F L, Zhang X Y, MacFarlane D R. Sulfated Carbon Quantum Dots as Efficient Visible-Light Switchable Acid Catalysts for Room-Temperature Ring-Opening Reactions[J]. Angew. Chem. Int. Ed., 2015,54(29):8420-8424. doi: 10.1002/anie.201501698

    10. [10]

      Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications[J]. Small, 2015,11(14):1620-1636. doi: 10.1002/smll.201402648

    11. [11]

      Xu X K, Li Y D, Hu G Q, Mo L Q, Zheng M T, Lei B F, Zhang X J, Hu C F, Zhuang J L, Liu Y L. Surface Functional Carbon Dots: Chemical Engineering Applications Beyond Optical Properties[J]. J. Mater. Chem. C, 2020,8:16282-16294. doi: 10.1039/D0TC03805A

    12. [12]

      Zhu J M, Li X H, Zhang Y Y, Wang J, Wei B Q. Graphene-Enhanced Nanomaterials for Wall Painting Protection[J]. Adv. Funct. Mater., 2018,28(44)1803872. doi: 10.1002/adfm.201803872

    13. [13]

      He P, Sun J, Tian S Y, Ding S J, Ding G Q, Xie X M, Jiang M H. Processable Aqueous Dispersions of Graphene Stabilized by Graphene Quantum Dots[J]. Chem. Mater., 2015,27(1):218-226. doi: 10.1021/cm503782p

    14. [14]

      Hao J, Li L Y, Zhao W W, Wu X Q, Xiao Y Y, Zhang H F, Tang N, Wang X C. Synthesis and Application of CCQDs as a Novel Type of Environmentally Friendly Scale Inhibitor[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9277-9282. doi: 10.1021/acsami.8b19015

    15. [15]

      Guo C S, Qian X M, Tian F, Li N, Wang W, Xu Z W, Zhang S N. Amino-Rich Carbon Quantum Dots Ultrathin Nanofiltration Membranes by Double"One-Step"Methods: Breaking through Trade-Off Among Separation, Permeation and Stability[J]. Chem. Eng. J., 2021,404127144. doi: 10.1016/j.cej.2020.127144

    16. [16]

      Hazarika D, Karak N. Nanocomposite of Waterborne Hyperbranched Polyester and Clay@Carbon Dot as a Robust Photocatalyst for Environmental Remediation[J]. Appl. Surf. Sci., 2019,498143832. doi: 10.1016/j.apsusc.2019.143832

    17. [17]

      Lauth V, Loretz B, Lehr C, Mass M, Rezwan K. Self-Assembly and Shape Control of Hybrid Nanocarriers Based on Calcium Carbonate and Carbon Nanodots[J]. Chem. Mater., 2016,28(11):3796-3803. doi: 10.1021/acs.chemmater.6b00769

    18. [18]

      ZHANG D Q, JIA Z G, LUO G C, WANG H Z, LI C Y, WU L, CHEN Q H. CDs-Induced Polymorphous CaCO3 Mineralization and Formation Mechanism[J]. Chinese J. Inorg. Chem., 2020,36(8):1557-1566.  

    19. [19]

      Cui M J, Ren S M, Xue Q J, Zhao H C, Wang L P. Carbon Dots as New Eco-friendly and Effective Corrosion Inhibitor[J]. J. Alloys Compd., 2017,726:680-692. doi: 10.1016/j.jallcom.2017.08.027

    20. [20]

      Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P J G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. Carbon Dots for Multiphoton Bioimaging[J]. J. Am. Chem. Soc., 2007,129(37):11318-11319. doi: 10.1021/ja073527l

    21. [21]

      Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging[J]. Angew. Chem. Int. Ed., 2015,54(18):5360-5363. doi: 10.1002/anie.201501193

    22. [22]

      Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew. Chem. Int. Ed., 2013,52(14):3953-3957. doi: 10.1002/anie.201300519

    23. [23]

      Miraftab R, Ramezanzadeh B, Bahlakeh G, Mahdavian M. An Advanced Approach for Fabricating a Reduced Graphene Oxide-AZO Dye/Polyurethane Composite with Enhanced Ultraviolet (UV) Shielding Properties: Experimental and First-Principles QM Modeling[J]. Chem. Eng. J., 2017,321:159-174. doi: 10.1016/j.cej.2017.03.124

    24. [24]

      Wu S S, Li W, Zhou W, Zhan Y, Hu C F, Zhuang J L, Zhang H R, Zhang X J, Lei B F, Liu Y L. Large-Scale One-Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material[J]. Adv. Optical Mater., 2018,6(7)1701150. doi: 10.1002/adom.201701150

  • 加载中
    1. [1]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    2. [2]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    8. [8]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    9. [9]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    12. [12]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    13. [13]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

Metrics
  • PDF Downloads(4)
  • Abstract views(1086)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return