Citation: Yu MA, Guang-Qi HU, Wei-Hao YE, Bao-Yan GUO, Xiao-Kai XU, Chao-Fan HU, Jian-Le ZHUANG, Ying-Liang LIU. Synthesis, Application, and Mechanism of Barium Sulfate Particle Size Modifiers C-N-CDs[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1317-1326. doi: 10.11862/CJIC.2022.127 shu

Synthesis, Application, and Mechanism of Barium Sulfate Particle Size Modifiers C-N-CDs

  • Corresponding author: Ying-Liang LIU, tliuyl@scau.edu.cn
  • Received Date: 29 January 2022
    Revised Date: 24 April 2022

Figures(10)

  • In this paper, carboxyl and amino-modified carbon dots (C-N-CDs) were prepared with citric acid and ethylenediamine by hydrothermal reaction, which have excellent particle size regulation of barium sulfate: the average particle size of BaSO4 particles prepared by the precipitation method can be reduced to 45.3 nm, which is smaller than the average particle size of BaSO4 particles prepared by traditional complexing agent ethylenediaminetetraace-tic acid (EDTA) regulation under the same conditions (73.7 nm). The as-prepared nano BaSO4 sample showed an excellent nano-toughening effect when added to polyvinyl alcohol (PVA) films. The chemical properties, surface electrical properties, and spatial site resistance of C-N-CDs were found to be important factors influencing the size of BaSO4 particles.
  • 加载中
    1. [1]

      SHANG F Y, HU F, SU X H. Present Status and Development Prospect of Precipitated Barium Sulfate Production in China[J]. Inorganic Chemicals Industry, 2015,47(1):1-4.  

    2. [2]

      MAN R L, LIU Y, YU J G. Preparation of Ultrafine Active Barite[J]. Journal of Central South University (Science and Technology), 2000,31(2):145-148.  

    3. [3]

      ZOU Y J, SHENG Y, ZHU D Q. Influencing Factors of Inorganic Rigid Particles Toughening Polypropylene[J]. Chinese Journal of Applied Chemistry, 2013,30(3):245-251.  

    4. [4]

      CHEN H Z, SUN Z L, ZHANG Y, ZHANG J. Research Progress in Modification and Application of Nano-sized Barium Sulfate[J]. Inorganic Chemicals Industry, 2019,51(11):6-12. doi: 10.11962/1006-4990.2019-0018

    5. [5]

      Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes[J]. ACS Nano, 2013,7(12):11234-11241. doi: 10.1021/nn405017q

    6. [6]

      Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization[J]. Adv. Mater., 2018,30(1)1704740. doi: 10.1002/adma.201704740

    7. [7]

      Hutton G A M, Reuillard B, Martindale B C M, Caputo C A, Lockwood C W J, Butt J N, Reisner E. Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes[J]. J. Am.Chem. Soc., 2016,138(51):16722-16730. doi: 10.1021/jacs.6b10146

    8. [8]

      Yu H J, Shi R, Zhao Y F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis[J]. Adv. Mater., 2016,28(43):9454-9477. doi: 10.1002/adma.201602581

    9. [9]

      Li H T, Sun C H, Ali M, Zhou F L, Zhang X Y, MacFarlane D R. Sulfated Carbon Quantum Dots as Efficient Visible-Light Switchable Acid Catalysts for Room-Temperature Ring-Opening Reactions[J]. Angew. Chem. Int. Ed., 2015,54(29):8420-8424. doi: 10.1002/anie.201501698

    10. [10]

      Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications[J]. Small, 2015,11(14):1620-1636. doi: 10.1002/smll.201402648

    11. [11]

      Xu X K, Li Y D, Hu G Q, Mo L Q, Zheng M T, Lei B F, Zhang X J, Hu C F, Zhuang J L, Liu Y L. Surface Functional Carbon Dots: Chemical Engineering Applications Beyond Optical Properties[J]. J. Mater. Chem. C, 2020,8:16282-16294. doi: 10.1039/D0TC03805A

    12. [12]

      Zhu J M, Li X H, Zhang Y Y, Wang J, Wei B Q. Graphene-Enhanced Nanomaterials for Wall Painting Protection[J]. Adv. Funct. Mater., 2018,28(44)1803872. doi: 10.1002/adfm.201803872

    13. [13]

      He P, Sun J, Tian S Y, Ding S J, Ding G Q, Xie X M, Jiang M H. Processable Aqueous Dispersions of Graphene Stabilized by Graphene Quantum Dots[J]. Chem. Mater., 2015,27(1):218-226. doi: 10.1021/cm503782p

    14. [14]

      Hao J, Li L Y, Zhao W W, Wu X Q, Xiao Y Y, Zhang H F, Tang N, Wang X C. Synthesis and Application of CCQDs as a Novel Type of Environmentally Friendly Scale Inhibitor[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9277-9282. doi: 10.1021/acsami.8b19015

    15. [15]

      Guo C S, Qian X M, Tian F, Li N, Wang W, Xu Z W, Zhang S N. Amino-Rich Carbon Quantum Dots Ultrathin Nanofiltration Membranes by Double"One-Step"Methods: Breaking through Trade-Off Among Separation, Permeation and Stability[J]. Chem. Eng. J., 2021,404127144. doi: 10.1016/j.cej.2020.127144

    16. [16]

      Hazarika D, Karak N. Nanocomposite of Waterborne Hyperbranched Polyester and Clay@Carbon Dot as a Robust Photocatalyst for Environmental Remediation[J]. Appl. Surf. Sci., 2019,498143832. doi: 10.1016/j.apsusc.2019.143832

    17. [17]

      Lauth V, Loretz B, Lehr C, Mass M, Rezwan K. Self-Assembly and Shape Control of Hybrid Nanocarriers Based on Calcium Carbonate and Carbon Nanodots[J]. Chem. Mater., 2016,28(11):3796-3803. doi: 10.1021/acs.chemmater.6b00769

    18. [18]

      ZHANG D Q, JIA Z G, LUO G C, WANG H Z, LI C Y, WU L, CHEN Q H. CDs-Induced Polymorphous CaCO3 Mineralization and Formation Mechanism[J]. Chinese J. Inorg. Chem., 2020,36(8):1557-1566.  

    19. [19]

      Cui M J, Ren S M, Xue Q J, Zhao H C, Wang L P. Carbon Dots as New Eco-friendly and Effective Corrosion Inhibitor[J]. J. Alloys Compd., 2017,726:680-692. doi: 10.1016/j.jallcom.2017.08.027

    20. [20]

      Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P J G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. Carbon Dots for Multiphoton Bioimaging[J]. J. Am. Chem. Soc., 2007,129(37):11318-11319. doi: 10.1021/ja073527l

    21. [21]

      Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging[J]. Angew. Chem. Int. Ed., 2015,54(18):5360-5363. doi: 10.1002/anie.201501193

    22. [22]

      Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew. Chem. Int. Ed., 2013,52(14):3953-3957. doi: 10.1002/anie.201300519

    23. [23]

      Miraftab R, Ramezanzadeh B, Bahlakeh G, Mahdavian M. An Advanced Approach for Fabricating a Reduced Graphene Oxide-AZO Dye/Polyurethane Composite with Enhanced Ultraviolet (UV) Shielding Properties: Experimental and First-Principles QM Modeling[J]. Chem. Eng. J., 2017,321:159-174. doi: 10.1016/j.cej.2017.03.124

    24. [24]

      Wu S S, Li W, Zhou W, Zhan Y, Hu C F, Zhuang J L, Zhang H R, Zhang X J, Lei B F, Liu Y L. Large-Scale One-Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material[J]. Adv. Optical Mater., 2018,6(7)1701150. doi: 10.1002/adom.201701150

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    3. [3]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    4. [4]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    5. [5]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

Metrics
  • PDF Downloads(5)
  • Abstract views(1698)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return