Citation: Yi-Zhen YUAN, Yun-Shang YANG, Yu-Chen ZHAO, Ying-Peng ZHANG. Organometallic Gels Based on Metal Ion Exchange for the Detection of Antibiotics and Nitroaromatic Compounds[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1121-1132. doi: 10.11862/CJIC.2022.126 shu

Organometallic Gels Based on Metal Ion Exchange for the Detection of Antibiotics and Nitroaromatic Compounds

Figures(11)

  • Rapid detection of organic compounds in wastewater has always been an important issue. Fluorescent Tb-based metal- organic gel MOG(Tb) was prepared by the metal ion exchange method. The studies have shown that trace amounts of furazolidone (FZD), metronidazole (MDZ), 2, 4-dinitrotoluene (2, 4-DNT), and 4-nitrophenol (4-NP) could effectively quench the fluorescence emission of MOG(Tb) even in the presence of other analytes, demonstrat-ing that the MOG(Tb) xerogels could effectively detect antibiotics (FZD, MDZ) and nitroaromatic compounds (2, 4-DNT, 4-NP). However, penicillin G potassium salt (PCLP) could enhance the fluorescence of MOG(Tb). In addi-tion, the recyclability and water stability tests of the MOG(Tb) xerogels were also carried out, and satisfactory results were obtained.
  • 加载中
    1. [1]

      Alsaedi M K, Alothman G K, Alnajrani M N, Alsager O A, Alshmimri S A, Alharbi M A, Alawad M O, Alhadlaq S, Alharbi S. Antibiotic Adsorption by Metal-Organic Framework (UiO-66): A Comprehensive Kinetic, Thermodynamic, and Mechanistic Study[J]. Antibiotics, 2020,9(10)722. doi: 10.3390/antibiotics9100722

    2. [2]

      Azhar M R, Abid H R, Sun H Q, Periasamy V, Tade M O, Wang S B. Excellent Performance of Copper Based Metal Organic Framework in Adsorptive Removal of Toxic Sulfonamide Antibiotics from Wastewater[J]. J. Colloid Interface Sci., 2016,478:344-352. doi: 10.1016/j.jcis.2016.06.032

    3. [3]

      Chai H M, Zhang G Q, Jiao C X, Ren Y X, Gao L J. A Multifunctional Tb-MOF Detector for H2O2, Fe3+, Cr2O72-, and TPA Explosive Featuring Coexistence of Binuclear and Tetranuclear Clusters[J]. ACS Omega, 2020,5(51):33039-33046. doi: 10.1021/acsomega.0c04526

    4. [4]

      Cong Z Z, Song Z F, Ma Y X, Zhu M C, Zhang Y, Wu S Y, Gao E J. Highly Emissive Metal-Organic Frameworks for Sensitive and Selective Detection of Nitrofuran and Quinolone Antibiotics[J]. Chem. Asian J., 2021,16(13):1773-1779. doi: 10.1002/asia.202100352

    5. [5]

      Firuzabadi F D, Alavi M A, Zarekarizi F, Tehrani A A, Morsali A. A Pillared Metal-Organic Framework with Rich π-Electron Linkers as a Novel Fluorescence Probe for the Highly Selective and Sensitive Detection of Nitroaromatics[J]. Colloids Surf. A, 2021,622126631. doi: 10.1016/j.colsurfa.2021.126631

    6. [6]

      Gai S, Zhang J, Fan R Q, Xing K, Chen W, Zhu K, Zheng X B, Wang P, Fang X K, Yang Y L. Highly Stable Zinc-Based Metal-Organic Frameworks and Corresponding Flexible Composites for Removal and Detection of Antibiotics in Water[J]. ACS Appl. Mater. Interfaces, 2020,12(7):8650-8662. doi: 10.1021/acsami.9b19583

    7. [7]

      Gan Z Y, Hu X T, Xu X C, Zhang W, Zou X B, Shi J Y, Zheng K Y, Arslan M. A Portable Test Strip Based on Fluorescent Europium-Based Metal-Organic Framework for Rapid and Visual Detection of Tetracycline in Food Samples[J]. Food Chem., 2021,354129501. doi: 10.1016/j.foodchem.2021.129501

    8. [8]

      Guo F, Su C H, Fan Y H, Shi W B, Zhang X L. Construction of a Dual-Response Luminescent Metal-Organic Framework with Excellent Stability for Detecting Fe3+ and Antibiotic with High Selectivity and Sensitivity[J]. J. Solid State Chem., 2020,284121183. doi: 10.1016/j.jssc.2020.121183

    9. [9]

      Guo X, Gao B, Cui X, Wang J H, Dong W Y, Duan Q, Su Z M. PL Sensor for Sensitive and Selective Detection of 2, 4, 6-Trinitrophenol Based on Carbazole and Tetraphenylsilane Polymer[J]. Dyes Pigment., 2021,191109379. doi: 10.1016/j.dyepig.2021.109379

    10. [10]

      Imanipoor J, Mohammadi M, Dinari M, Ehsani M R. Adsorption and Desorption of Amoxicillin Antibiotic from Water Matrices Using an Effective and Recyclable MIL-53(Al) Metal-Organic Framework Adsorbent[J]. J. Chem. Eng. Data, 2021,66(1):389-403. doi: 10.1021/acs.jced.0c00736

    11. [11]

      Joseph L, Jun B M, Jang M, Park C M, Munoz-Senmache J C, Hernandez-Maldonado A J, Heyden A, Yu M, Yoon Y. Removal of Contaminants of Emerging Concern by Metal-Organic Framework Nanoadsorbents: A Review[J]. Chem. Eng. J., 2019,369:928-946. doi: 10.1016/j.cej.2019.03.173

    12. [12]

      Li B, Jiang Y Y, Sun Y Y, Wang Y J, Han M L, Wu Y P, Ma L F, Li D S. The Highly Selective Detecting of Antibiotics and Support of Noble Metal Catalysts by a Multifunctional Eu-MOF[J]. Dalton Trans., 2020,49(42):14854-14862. doi: 10.1039/D0DT03176C

    13. [13]

      Li C L, Zeng C H, Chen Z, Jiang Y F, Yao H, Yang Y Y, Wong W T. Luminescent Lanthanide Metal-Organic Framework Test Strip for Immediate Detection of Tetracycline Antibiotics in Water[J]. J. Hazard. Mater., 2020,384121498. doi: 10.1016/j.jhazmat.2019.121498

    14. [14]

      Li C P, Long W W, Lei Z, Guo L, Xie M J, Lu J, Zhu X D. Anionic Metal-Organic Framework as a Unique Turn-On Fluorescent Chemical Sensor for Ultra-Sensitive Detection of Antibiotics[J]. Chem. Commun., 2020,56(82):12403-12406. doi: 10.1039/D0CC05175F

    15. [15]

      Li D, Lv N, Yu J K, Qiao Y, Xue X X, Li H J, Che G B. Synthesis, Crystal Structure and Highly Sensitive Detection Property of a Fluorescent Copper Coordination Polymer[J]. J. Mol. Struct., 2021,1236130347. doi: 10.1016/j.molstruc.2021.130347

    16. [16]

      Li J, Ye C F, Wu Y N, Zhu Y J, Xu J J, Wang Y, Wang H T, Guo M T, Li F T. Novel Sensing Platform Based on Gold Nanoparticle-Aptamer and Fe-Metal-Organic Framework for Multiple Antibiotic Detection and Signal Amplification[J]. Environ. Int., 2019,125:135-141. doi: 10.1016/j.envint.2019.01.033

    17. [17]

      Li S Q, Liu X D, Chai H X, Huang Y M. Recent Advances in the Construction and Analytical Applications of Metal-Organic Frameworks-Based Nanozymes[J]. Trac-Trends Anal. Chem., 2018,105:391-403. doi: 10.1016/j.trac.2018.06.001

    18. [18]

      Li W T, Hu Z J, Meng J, Zhang X, Gao W, Chen M L, Wang J H. Zn-Based Metal Organic Framework-Covalent Organic Framework Composites for Trace Lead Extraction and Fluorescence Detection of TNP[J]. J. Hazard. Mater., 2021,411125021. doi: 10.1016/j.jhazmat.2020.125021

    19. [19]

      Li Z P, Zhu X P, Gao E J, Wu S Y, Zhang Y, Zhu M C. Bifunctional Luminescent Eu Metal-Organic Framework for Sensing Nitroaromatic Pollutants and Fe3+ Ion with High Sensitivity and Selectivity[J]. Appl. Organomet. Chem., 2021,35(3)e6136.

    20. [20]

      Liang X Q, Wen L X, Mi Y F, Guo J J, Yu B, Tao M, Cao Z H, Zhao Z J. Highly Cross-Linked Polymeric Nanoparticles with Aggregation-Induced Emission for Sensitive and Recyclable Explosive Detection[J]. Dyes Pigment., 2021,191109369. doi: 10.1016/j.dyepig.2021.109369

    21. [21]

      Lin Z G, Song F Q, Wang H, Song X Q, Yu X X, Liu W S. The Construction of a Novel Luminescent Lanthanide Framework for the Selective Sensing of Cu2+ and 4-Nitrophenol in Water[J]. Dalton Trans., 2021,50(5):1874-1886. doi: 10.1039/D0DT04089D

    22. [22]

      Liu S, Bai J L, Huo Y P, Ning B A, Peng Y, Li S, Han D P, Kang W J, Gao Z X. A Zirconium-Porphyrin MOF-Based Ratiometric Fluorescent Biosensor for Rapid and Ultrasensitive Detection of Chloramphenicol[J]. Biosens. Bioelectron., 2020,149111801. doi: 10.1016/j.bios.2019.111801

    23. [23]

      Liu X G, Tao C L, Yu H Q, Chen B, Liu Z, Zhu G P, Zhao Z J, Shen L, Tang B Z. A New Luminescent Metal-Organic Framework Based on Dicarboxyl-Substituted Tetraphenylethene for Efficient Detection of Nitro-Containing Explosives and Antibiotics in Aqueous Media[J]. J. Mater. Chem. C, 2018,6(12):2983-2988. doi: 10.1039/C7TC05535H

    24. [24]

      Lu D K, Qin M H, Liu C, Deng J J, Shi G Y, Zhou T S. Ionic Liquid-Functionalized Magnetic Metal-Organic Framework Nanocomposites for Efficient Extraction and Sensitive Detection of Fluoroquinolone Antibiotics in Environmental Water[J]. ACS Appl. Mater. Interfaces, 2021,13(4):5357-5367. doi: 10.1021/acsami.0c17310

    25. [25]

      Nacarogluballi J, Kirpik H, Kose M. A Gossypol-Hydrazone Compound and Its Sensing Properties towards Metal Ions and Nitro-Phenolic Compounds[J]. J. Mol. Struct., 2021,1236130310. doi: 10.1016/j.molstruc.2021.130310

    26. [26]

      Qin Z S, Dong W W, Zhao J, Wu Y P, Tian Z F, Zhang Q, Li D S. Metathesis in Metal-Organic Gels (MOGs): A Facile Strategy to Construct Robust Fluorescent Ln-MOG Sensors for Antibiotics and Explosives[J]. Eur. J. Inorg. Chem., 2018(2):186-193.

    27. [27]

      Qin Z S, Dong W W, Zhao J, Wu Y P, Zhang Q C, Li D S. A Water-Stable Tb(Ⅲ)-Based Metal-Organic Gel (MOG) for Detection of Antibiotics and Explosives[J]. Inorg. Chem. Front., 2018,5(1):120-126. doi: 10.1039/C7QI00495H

    28. [28]

      Safaei M, Foroughi M M, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. A Review on Metal-Organic Frameworks: Synthesis and Applications[J]. Trac-Trends Anal. Chem., 2019,118:401-425. doi: 10.1016/j.trac.2019.06.007

    29. [29]

      Sharma V, Mehata M S. Rapid Optical Sensor for Recognition of Explosive 2, 4, 6-TNP Traces in Water through Fluorescent Znse Quantum Dots[J]. Spectrochim. Acta A, 2021,260119937. doi: 10.1016/j.saa.2021.119937

    30. [30]

      Singhaal R, Tashi L, Nisa Z, Ashashi N A, Sen C, Devi S, Sheikh H N. PEI Functionalized NaCeF4∶Tb3+/Eu3+ for Photoluminescence Sensing of Heavy Metal Ions and Explosive Aromatic Nitro Compounds[J]. RSC Adv., 2021,11(32):19333-19350. doi: 10.1039/D1RA02910J

    31. [31]

      Skorjanc T, Shetty D, Valant M. Covalent Organic Polymers and Frameworks for Fluorescence-Based Sensors[J]. ACS Sens., 2021,6(4):1461-1481. doi: 10.1021/acssensors.1c00183

    32. [32]

      Sun S L, Sun X Y, Sun Q, Gao E Q, Zhang J L, Li W J. Europium Metal-Organic Framework Containing Helical Metal-Carboxylate Chains for Fluorescence Sensing of Nitrobenzene and Nitrofunans Antibiotics[J]. J. Solid State Chem., 2020,292121701. doi: 10.1016/j.jssc.2020.121701

    33. [33]

      Wang B, Lv X L, Feng D W, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. Highly Stable Zr(Ⅳ)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    34. [34]

      Wang G, Sun T T, Sun Z R, Hu X. Preparation of Copper Based Metal Organic Framework Materials and Its Effective Adsorptive Removal of Ceftazidime from Aqueous Solutions[J]. Appl. Surf. Sci., 2020,532147411. doi: 10.1016/j.apsusc.2020.147411

    35. [35]

      Wang B, Lv X L, Feng D, Xie L H, Zhang J, Li M, Zhou H C. Highly Stable Zr(Ⅳ)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    36. [36]

      Qin J H, Huang Y D, Shi M Y, Wang H R, Ma L F. Aqueous-Phase Detection of Antibiotics and Nitroaromatic Explosives by an Alkali-Resistant Zn -MOF Directed by an Ionic Liquid[J]. RSC Adv., 2020,10(3):1439-1446. doi: 10.1039/C9RA08733H

    37. [37]

      Wang J, Zha Q Q, Qin G X, Ni Y H. A Novel Zn(Ⅱ)-Based Metal-Organic Framework as a High Selective and Sensitive Sensor for Fluorescent Detections of Aromatic Nitrophenols and Antibiotic Metronidazole[J]. Talanta, 2020,211120742. doi: 10.1016/j.talanta.2020.120742

    38. [38]

      Wang K, Zhuang T, Su Z X, Chi M H, Wang H C. Antibiotic Residues in Wastewaters from Sewage Treatment Plants and Pharmaceutical Industries: Occurrence, Removal and Environmental Impacts[J]. Sci. Total Environ., 2021,788147811. doi: 10.1016/j.scitotenv.2021.147811

    39. [39]

      Wang J, He C, Wu P Y, Wang J, Duan C Y. An Amide-Containing Metal-Organic Tetrahedron Responding to a Spin-Trapping Reaction in a Fluorescent Enhancement Manner for Biological Imaging of NO in Living Cells[J]. J. Am. Chem. Soc., 2011,133(32):12402-12405. doi: 10.1021/ja2048489

    40. [40]

      Xu Y L, Liu Y, Liu X H, Zhao Y, Wang P, Wang Z L, Sun W Y. Novel Cadmium(Ⅱ) Frameworks with Mixed Carboxylate and Imidazole-Containing Ligands for Selective Detection of Antibiotics[J]. Polyhedron, 2018,154:350-356. doi: 10.1016/j.poly.2018.08.009

    41. [41]

      Zhou S H, Lu L, Liu D, Wang J, Sakiyama H, Muddassir M, Liu J Q. Series of Highly Stable Cd(Ⅱ)-Based MOFs as Sensitive and Selective Sensors for Detection of Nitrofuran Antibiotic[J]. CrystEngComm, 2021,23(46):8043-8052. doi: 10.1039/D1CE01264A

    42. [42]

      Li J, Chen T J, Han S, Song L F. Four Zn(Ⅱ)-Organic Frameworks as Luminescent Probe for Highly Selectivity Detection of Cr(Ⅵ) Ions and Antibiotics[J]. J. Solid State Chem., 2019,277:107-114. doi: 10.1016/j.jssc.2019.05.038

    43. [43]

      Qin J H, Huang Y D, Shi M Y, Wang H R, Han M L, Yang X G, Ma L F. Aqueous-Phase Detection of Antibiotics and Nitroaromatic Explosives by an Alkali-Resistant Zn-MOF Directed by an Ionic Liquid[J]. RSC Adv., 2020,10(3):1439-1446. doi: 10.1039/C9RA08733H

    44. [44]

      Wang G D, Li Y Z, Shi W J, Zhang B, Hou L, Wang Y Y. A Robust Cluster-Based Eu-MOF as Multi-functional Fluorescence Sensor for Detection of Antibiotics and Pesticides in Water[J]. Sens. Actuators B, 2021,331129377. doi: 10.1016/j.snb.2020.129377

    45. [45]

      Ji X X, Wu S Y, Song D X, Chen S Y, Chen Q, Gao E J, Xu J, Zhu X P, Zhu M C. A Water-Stable Luminescent Sensor Based on Cd2+ Coordination Polymer for Detecting Nitroimidazole Antibiotics in Water[J]. Appl. Organomet. Chem., 2021,35(10)e6359.

    46. [46]

      Li J M, Li R, Li X. Construction of Metal-Organic Frameworks (MOFs) and Highly Luminescent Eu(Ⅲ)-MOF for the Detection of Inorganic Ions and Antibiotics in Aqueous Medium[J]. CrystEngComm, 2018,20(34):4962-4972. doi: 10.1039/C8CE00915E

    47. [47]

      Wang W, Yang J, Wang R M, Zhang L L, Yu J F, Sun D F. Luminescent Terbium-Organic Framework Exhibiting Selective Sensing of Nitroaromatic Compounds (NACs)[J]. Cryst. Growth Des., 2015,15(6):2589-2592. doi: 10.1021/acs.cgd.5b00381

    48. [48]

      Abuzalat O, Wong D, Park S S, Kim S. Highly Selective and Sensitive Fluorescent Zeolitic Imidazole Frameworks Sensor for Nitroaromatic Explosive Detection[J]. Nanoscale, 2020,12(25):13523-13530. doi: 10.1039/D0NR01653E

    49. [49]

      Kaur M, Mehta S K, Kansal S K. A Fluorescent Probe Based on Nitrogen Doped Graphene Quantum Dots for Turn Off Sensing of Explosive and Detrimental Water Pollutant, TNP in Aqueous Medium[J]. Spectrochim. Acta A, 2017,180:37-43. doi: 10.1016/j.saa.2017.02.035

  • 加载中
    1. [1]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    2. [2]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    6. [6]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    9. [9]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    10. [10]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    15. [15]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    16. [16]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    17. [17]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    18. [18]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    19. [19]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    20. [20]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

Metrics
  • PDF Downloads(0)
  • Abstract views(570)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return