Li7P3S11 Electrolyte: Synthesis, Conduction, and Application
- Corresponding author: Chuang YU, cyu2020@hust.edu.cn Li-Ping LI, lipingli@jlu.edu.cn Jia XIE, xiejia@hust.edu.cn
Citation: Cong LIAO, Chuang YU, Lin-Feng PENG, Li-Ping LI, Shi-Jie CHENG, Jia XIE. Li7P3S11 Electrolyte: Synthesis, Conduction, and Application[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 977-992. doi: 10.11862/CJIC.2022.122
Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001,414(6861):359-367. doi: 10.1038/35104644
Yu C, Van Eijck L, Ganapathy S, Wagemaker M. Synthesis, Structure and Electrochemical Performance of the Argyrodite Li6PS5Cl Solid Electrolyte for Li-Ion Solid State Batteries[J]. Electrochim. Acta, 2016,215:93-99. doi: 10.1016/j.electacta.2016.08.081
Yu C, Li Y, Li W H, Adair K R, Zhao F P, Willans M, Liang J W, Zhao Y, Wang C H, Deng S X, Li R Y, Huang H, Lu S G, Sham T K, Huang Y N, Sun X L. Enabling Ultrafast Ionic Conductivity in Br-Based Lithium Argyrodite Electrolytes for Solid-State Batteries with Different Anodes[J]. Energy Storage Mater., 2020,30:238-249. doi: 10.1016/j.ensm.2020.04.014
Yu S C, Mertens A, Tempel H, Schierholz R, Kungl H, Eichel R A. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility[J]. ACS Appl. Mater. Interfaces, 2018,10(26):22264-22277. doi: 10.1021/acsami.8b05902
Peng L F, Ren H T, Zhang J Z, Chen S Q, Yu C, Miao X F, Zhang Z Q, He Z Y, Yu M, Zhang L, Cheng S J, Xie J. LiNbO3-Coated LiNi0.7Co0.1Mn0.2O2 and Chlorine-Rich Argyrodite Enabling High-Performance Solid-State Batteries under Difffferent Temperatures[J]. Energy Storage Mater., 2021,43:53-61. doi: 10.1016/j.ensm.2021.08.028
Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, De Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y L, Van Der Maas E, Kelder E M, Ganapathy S, Wagemaker M. Clarifying the Relationship between Redox Activity and Electrochemical Stability in Solid Electrolytes[J]. Nat. Mater., 2020,19(4):428-435. doi: 10.1038/s41563-019-0576-0
SUN Q S, ZHU C J, XIE J, CAO G S, ZHAO X B, ZHENG D, JIN Y, WANG K Y, GUO Y B, TU F F. Preparation and Electrochemical Performance of Ceramic/Polymer-Based Composite Electrolytes[J]. Chinese J. Inorg. Chem., 2019,35(5):865-870.
Gong Y X, Wang J J. Solid-State Batteries: From Fundamental Interface Characterization to Realize Sustainable Promise[J]. Rare Met., 2020,39(7):743-744. doi: 10.1007/s12598-020-01429-x
TU F F, XIE J, GUO F, ZHAO X B, WANG Y P, CHEN D, XIANG J Y, CHEN J. Preparation and Electrochemical Performance of Li6.4La3Zr1.4Ta0.6O12/Polymer-Based Solid Composite Electrolyte[J]. Chinese J. Inorg. Chem., 2020,36(8):1515-1523.
Xu R C, Han F D, Ji X, Fan X L, Tu J P, Wang C S. Interface Engineering of Sulfide Electrolytes for All-Solid-State Lithium Batteries[J]. Nano Energy, 2018,53:958-966. doi: 10.1016/j.nanoen.2018.09.061
Reddy M V, Julien C M, Mauger A, Zaghib K. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review[J]. Nanomaterials, 2020,10(8)1606. doi: 10.3390/nano10081606
Jiang Z Y, Wang S Q, Chen X Z, Yang W L, Yao X, Hu X C, Han Q Y, Wang H H. Tape-Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium-Metal Batteries[J]. Adv. Mater., 2020,32(6)1906221. doi: 10.1002/adma.201906221
Liu X Z, Ding L, Liu Y Z, Xiong L P, Chen J, Luo X L. Room-Temperature Ionic Conductivity of Ba, Y, Al Co-Doped Li7La3Zr2O12 Solid Electrolyte after Sintering[J]. Rare Met., 2020,40(8):2301-2306.
ZHOU D F, GE Z M, GUO W, MENG J. Synthesis, Characterization and Electrical Properties of Solid State Electrolyte Materials La2-xCaxMo1.7W0.3O9-δ(0≤x≤0.2)[J]. Chinese J. Inorg. Chem., 2007,23(1):81-85. doi: 10.3321/j.issn:1001-4861.2007.01.013
Adeli P, Bazak J D, Park K H, Kochetkov I, Huq A, Goward G R, Nazar L F. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution[J]. Angew. Chem. Int. Ed., 2019,58(26):8681-8686. doi: 10.1002/anie.201814222
Chen S J, Xie D J, Liu G Z, Mwizerwa J P, Zhang Q, Zhao Y R, Xu X X, Yao X Y. Sulfide Solid Electrolytes for All-Solid-State Lithium Batteries: Structure, Conductivity, Stability and Application[J]. Energy Storage Mater., 2018,14:58-74. doi: 10.1016/j.ensm.2018.02.020
Zhu G L, Zhao C Z, Yuan H, Zhao B C, Hou L P, Cheng X B, Nan H X, Lu Y, Zhang J, Huang J Q, Liu Q B, He C X, Zhang Q. Interfacial Redox Behaviors of Sulfide Electrolytes in Fast-Charging All-Solid-State Lithium Metal Batteries[J]. Energy Storage Mater., 2020,31:267-273. doi: 10.1016/j.ensm.2020.05.017
Quartarone E, Mustarelli P. Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives[J]. Chem. Soc. Rev., 2011,40(5):2525-2540. doi: 10.1039/c0cs00081g
Xu X Y, Hou G M, Nie X K, Ai Q, Liu Y, Feng J K, Zhang L, Si P C, Guo S R, Ci L J. Li7P3S11/Poly(ethylene oxide) Hybrid Solid Electrolytes with Excellent Interfacial Compatibility for All-Solid-State Batteries[J]. J. Power Sources, 2018,400:212-217. doi: 10.1016/j.jpowsour.2018.08.016
Li W, Wu G T, Araújo C M, Scheicher R H, Blomqvist A, Ahuja R, Xiong Z T, Feng Y P, Chen P. Li+ Ion Conductivity and Diffusion Mechanism in α-Li3N and β-Li3N[J]. Energy Environ. Sci., 2010,3(10):1524-1530. doi: 10.1039/c0ee00052c
Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries[J]. Adv. Mater., 2018,30(44)1803075. doi: 10.1002/adma.201803075
Huang B X, Yao X Y, Huang Z, Guan Y B, Jin Y, Xu X X. Li3PO4-Doped Li7P3S11 Glass-Ceramic Electrolytes with Enhanced Lithium Ion Conductivities and Application in All-Solid-State Batteries[J]. J. Power Sources, 2015,284:206-211. doi: 10.1016/j.jpowsour.2015.02.160
Ahmad N, Zhou L, Faheem M, Tufail M K, Yang L, Chen R J, Zhou Y D, Yang W. Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(19):21548-21558. doi: 10.1021/acsami.0c00393
Xu R C, Xia X H, Yao Z J, Wang X L, Gu C D, Tu J P. Preparation of Li7P3S11 Glass-Ceramic Electrolyte by Dissolution-Evaporation Method for All-Solid-State Lithium Ion Batteries[J]. Electrochim. Acta, 2016,219:235-240. doi: 10.1016/j.electacta.2016.09.155
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A Lithium Superionic Conductor[J]. Nat. Mater., 2011,10(9):682-686. doi: 10.1038/nmat3066
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A Sulfide Lithium Super Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries[J]. Energy Environ Sci., 2014,7(2):627-631. doi: 10.1039/C3EE41655K
Kizilaslan A, Akbulut H. Assembling All-Solid-State Lithium Sulfur Batteries with Li3N-Protected Anodes[J]. Chem Phys Chem, 2019,84(2):183-189.
Yoon D H, Park Y J. Electrochemical Properties of Cathode According to the Type of Sulfide Electrolyte and the Application of Surface Coating[J]. J. Electrochem. Sci. Technol., 2021,12(1):126-136. doi: 10.33961/jecst.2020.01361
Tufail M K, Zhou L, Ahmad N, Chen R, Faheem M, Yang L, Yang W. A Novel Air-Stable Li7Sb0.05P2.95S10.5I0.5 Superionic Conductor Glass-Ceramics Electrolyte for All-Solid-State Lithium-Sulfur Batteries[J]. Chem. Eng. J., 2021,407:127-149.
Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M. Crystal Structure of a Superionic Conductor, Li7P3S11[J]. Solid State Ionics, 2007,178(15/16/17/18):1163-1167.
Kudu O U, Famprikis T, Fleutot B, Braida M D, Le Mercier T, Islam M S, Masquelier C. A Review of Structural Properties and Synthesis Methods of Solid Electrolyte Materials in the Li2S-P2S5 Binary System[J]. J. Power Sources, 2018,407(15):31-43.
Onodera Y, Mori K, Otomo T, Sugiyama M, Fukunaga T. Structural Evidence for High Ionic Conductivity of Li7P3S11 Metastable Crystal[J]. J. Phys. Soc. Jpn., 2012,81(4)044802. doi: 10.1143/JPSJ.81.044802
Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y, Ceder G. Design Principles for Solid-State Lithium Superionic Conductors[J]. Nat. Mater., 2015,14(10):1026-1031. doi: 10.1038/nmat4369
Lepley N D, Holzwarth N A W. Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates[J]. J. Electrochem. Soc., 2012,159(5):A538-A547. doi: 10.1149/2.jes113225
Xiong K, Longo R C, Santosh K C, Wang W, Cho K. Behavior of Li Defects in Solid Electrolyte Lithium Thiophosphate Li7P3S11: A First Principles Study[J]. Comput. Mater. Sci., 2014,90:44-49. doi: 10.1016/j.commatsci.2014.03.030
Chu I H, Han N, Hy S, Lin Y C, Wang Z B, Xu Z H, Deng Z, Meng Y S, Ong S P. Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study[J]. ACS Appl. Mater. Interfaces, 2016,8(12):7843-7853. doi: 10.1021/acsami.6b00833
Minami K, Mizuno F, Hayashi A, Tatsumisago M. Lithium Ion Conductivity of the Li2S-P2S5 Glass-Based Electrolytes Prepared by the Melt Quenching Method[J]. Solid State Ionics, 2007,178(11/12):837-841.
Holzwarth N A W, Lepley N D, Du Y A. Computer Modeling of Lithium Phosphate and Thiophosphate Electrolyte Materials[J]. J. Power Sources, 2011,196(16):6870-6876. doi: 10.1016/j.jpowsour.2010.08.042
Minami K, Hayashi A, Tatsumisago M. Preparation and Characterization of Superionic Conducting Li7P3S11 Crystal from Glassy Liquids[J]. J. Ceram. Soc. Jpn., 2010,118(1376):305-308. doi: 10.2109/jcersj2.118.305
Hayashi A, Minami K, Ujiie S, Tatsumisago M. Preparation and Ionic Conductivity of Li7P3S11-z Glass-Ceramic Electrolytes[J]. J. Non-Cryst. Solids, 2010,356(44/45/46/47/48/49):2670-2673.
Seino Y, Nakagawa M, Senga M, Higuchi H, Takada K, Sasaki T. Analysis of the Structure and Degree of Crystallization of 70Li2S-30P2S5 Glass Ceramic[J]. J. Mater. Chem. A, 2015,3(6):2756-2761. doi: 10.1039/C4TA04332D
Minami K, Hayashi A, Tatsumisago M. Crystallization Process for Superionic Li7P3S11 Glass-Ceramic Electrolytes[J]. J. Am. Ceram. Soc., 2011,94(6):1779-1783. doi: 10.1111/j.1551-2916.2010.04335.x
Busche M R, Weber D A, Schneider Y, Dietrich C, Wenzel S, Leichtweiss T, Schroeder D, Zhang W, Weigand H, Walter D, Sedlmaier S J, Houtarde D, Nazar L F, Janek J. In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup[J]. Chem. Mater., 2016,28(17):6152-6165. doi: 10.1021/acs.chemmater.6b02163
Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. High Lithium Ion Conducting Glass-Ceramics in the System Li2S-P2S5[J]. Solid State Ionics, 2006,177(26/27/28/29/30/31/32):2721-2725.
Miura A, Rosero-Navarro N C, Sakuda A, Tadanaga K, Phuc N H H, Matsuda A, Machida N, Hayashi A, Tatsumisago M. Liquid-Phase Syntheses of Sulfide Electrolytes for All-Solid-State Lithium Battery[J]. Nat. Rev. Chem., 2019,3(3):189-198. doi: 10.1038/s41570-019-0078-2
Wang Y X, Lu D P, Bowden M, El Khoury P Z, Han K S, Deng Z D, Xiao J, Zhang J G, Liu J. Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis[J]. Chem. Mater., 2018,30(3):990-997. doi: 10.1021/acs.chemmater.7b04842
Ito S, Nakakita M, Aihara Y, Uehara T, Machida N. A Synthesis of Crystalline Li7P3S11 Solid Electrolyte from 1, 2-Dimethoxyethane Solvent[J]. J. Power Sources, 2014,271(20):342-345.
Calpa M, Rosero-Navarro N C, Miura A, Tadanaga K. Instantaneous Preparation of High Lithium-Ion Conducting Sulfide Solid Electrolyte Li7P3S11 by a Liquid Phase Process[J]. RSC Adv., 2017,7(73):46499-46504. doi: 10.1039/C7RA09081A
Suto K, Bonnick P, Nagai E, Niitani K, Arthur T S, Muldoon J. Microwave-Aided Synthesis of Lithium Thiophosphate Solid Electrolyte[J]. J. Mater. Chem. A, 2018,6(43):21261-21265. doi: 10.1039/C8TA08070D
Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes[J]. Adv. Mater., 2021,33(6)2000751. doi: 10.1002/adma.202000751
Jiang Z, Liang T B, Liu Y, Zhang S Z, Li Z X, Wang D H, Wang X L, Xia X H, Gu C D, Tu J P. Improved Ionic Conductivity and Li Dendrite Suppression Capability toward Li7P3S11-Based Solid Electrolytes Triggered by Nb and O Cosubstitution[J]. ACS Appl. Mater. Interfaces, 2020,12(49):54662-54670. doi: 10.1021/acsami.0c15903
Liu H H, Yang Z H, Wang Q, Wang X Y, Shi X Q. Atomistic Insights into the Screening and Role of Oxygen in Enhancing the Li+ Conductivity of Li7P3S11-xOx Solid-State Electrolytes[J]. Phys. Chem. Chem. Phys., 2019,21(48):26358-26367. doi: 10.1039/C9CP05329H
Ren H T, Zhang Z Q, Zhang J Z, Peng L F, He Z Y, Yu M, Yu C, Zhang L, Xie J, Cheng S J. Improvement of Stability and Solid-State Battery Performances of Annealed 70Li2S-30P2S5 Electrolytes by Additives[J]. Rare Met., 2022,41:106-114. doi: 10.1007/s12598-021-01804-2
Zhou L, Tufail M K, Yang L, Ahmad N, Chen R, Yang W. Cathode-Doped Sulfide Electrolyte Strategy for Boosting All-Solid-State Lithium Batteries[J]. Chem. Eng. J., 2020,391123529. doi: 10.1016/j.cej.2019.123529
Hamabe K, Utsuno F, Ohkubo T. Lithium Conduction and the Role of Alkaline Earth Cations in Li 2S-P2S5-MS (M=Ca, Sr, Ba) Glasses[J]. J. Non-Cryst. Solids, 2020,538120025. doi: 10.1016/j.jnoncrysol.2020.120025
Xu R C, Xia X H, Wang X L, Xia Y, Tu J P. Tailored Li2S-P2S5 Glass-Ceramic Electrolyte by MoS2 Doping with High Ionic Conductivity for All-Solid-State Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5(6):2829-2834. doi: 10.1039/C6TA10142A
Rajagopal R, Ryu K S. Structural Investigations, Visualization, and Electrolyte Properties of Silver Halide-Doped Li7P3S11 Lithium Superionic Conductors[J]. ACS Sustainable Chem. Eng., 2021,9(3):1105-1117. doi: 10.1021/acssuschemeng.0c03634
Ujiie S, Inagaki T, Hayashi A, Tatsumisago M. Conductivity of 70Li2S·30P2S5 Glasses and Glass-Ceramics Added with Lithium Halides[J]. Solid State Ionics, 2014,263:57-61. doi: 10.1016/j.ssi.2014.05.002
Ujiie S, Hayashi A, Tatsumisago M. Structure, Ionic Conductivity and Electrochemical Stability of Li2S-P2S5-LiI Glass and Glass-Ceramic Electrolytes[J]. Solid State Ionics, 2012,211:42-45. doi: 10.1016/j.ssi.2012.01.017
Aoki Y, Ogawa K, Nakagawa T, Hasegawa Y, Sakiyama Y, Kojima T, Tabuchi M. Chemical and Structural Changes of 70Li2S·30P2S5 Solid Electrolyte during Heat Treatment[J]. Solid State Ionics, 2017,310:50-55. doi: 10.1016/j.ssi.2017.08.006
Minami K, Mizuno F, Hayashi A, Tatsumisago M. Structure and Properties of the 70Li2S· (30-x)P2S5·xP2O5 Oxysulfide Glasses and Glass-Ceramics[J]. J. Non-Cryst. Solids, 2008,354(2/3/4/5/6/7/8/9):370-373.
Minami K, Hayashi A, Tatsumisago M. Preparation and Characterization of Lithium Ion Conducting Li2S-P2S5-GeS2 Glasses and Glass-Ceramics[J]. J. Non-Cryst. Solids, 2010,356(44/45/46/47/48/49):2666-2669.
Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, Tu J P. All-Solid-State Lithium-Sulfur Batteries Based on a Newly Designed Li7P2.9Mn0.1S10.7I0.3 Superionic Conductor[J]. J. Mater. Chem. A, 2017,5(13):6310-6317. doi: 10.1039/C7TA01147D
Zhang N, Ding F, Yu S, Zhu K, Li H, Zhang W, Liu X, Xu Q. Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped Li7P3S11 Glass-Ceramic Electrolytes[J]. ACS Appl. Mater. Interfaces, 2019,11(31):27897-27905. doi: 10.1021/acsami.9b08218
Yu C, Ganapathy S, Van Eck E R H, Van Eijck L, De Klerk N, Kelder E M, Wagemaker M. Investigation of Li-Ion Transport in Li7P3S11 and Solid-State Lithium Batteries[J]. J. Energy Chem., 2019,38:1-7. doi: 10.1016/j.jechem.2018.12.017
Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M. Improved Chemical Stability and Cyclability in Li2S-P2S5-P2O5-ZnO Composite Electrolytes for All-Solid-State Rechargeable Lithium Batteries[J]. J. Alloys Compd., 2014,591:247-250. doi: 10.1016/j.jallcom.2013.12.191
Tan D H S, Banerjee A, Deng Z, Wu E A, Han N, Doux J M, Wang X F, Cheng J H, Ong S P, Meng Y S, Chen Z. Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process[J]. ACS Appl. Energy Mater., 2019,2(9):6542-6550. doi: 10.1021/acsaem.9b01111
Vardar G, Bowman W J, Lu Q Y, Wang J Y, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B. Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode[J]. Chem. Mater., 2018,30(18):6259-6276. doi: 10.1021/acs.chemmater.8b01713
Zhu Y Z, He X F, Mo Y F. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations[J]. ACS Appl. Mater. Interfaces, 2015,7(42):23685-23693. doi: 10.1021/acsami.5b07517
Han F D, Zhu Y Z, He X F, Mo Y F, Wang C S. Electrochemical Stability of Li10GeP2S12 and Li7La3 Zr2O12 Solid Electrolytes[J]. Adv. Energy Mater., 2016,6(8)1501590. doi: 10.1002/aenm.201501590
Haruyama J, Sodeyama K, Han L Y, Takada K, Tateyama Y. Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery[J]. Chem. Mater., 2014,26(14):4248-4255. doi: 10.1021/cm5016959
Haruyama J, Sodeyama K, Tateyama Y. Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery[J]. ACS Appl. Mater. Interfaces, 2017,9(1):286-292. doi: 10.1021/acsami.6b08435
Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W B, Binder J O, Hartmann P, Zeier W G, Janek J. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes[J]. Chem. Mater., 2017,29(13):5574-5582. doi: 10.1021/acs.chemmater.7b00931
Richards W D, Miara L J, Wang Y, Kim J C, Ceder G. Interface Stability in Solid-State Batteries[J]. Chem. Mater., 2015,28(1):266-273.
Han Q G, Li X L, Shi X X, Zhang H Z, Song D W, Ding F, Zhang L Q. Outstanding Cycle Stability and Rate Capabilities of the All-Solid-State Li-S Battery with Li7P3S11 Glass-Ceramic Electrolyte and Core-Shell S@BP2000 Nanocomposite[J]. J. Mater. Chem. A, 2019,7(8):3895-3902. doi: 10.1039/C8TA12443D
Kizilaslan A, Efe S, Akbulut H. Electrochemical Evaluation of Different Graphene/Sulfur Composite Synthesis Routes in All-Solid-State Lithium-Sulfur Batteries[J]. J. Solid State Electrochem., 2020,24(10):2279-2288. doi: 10.1007/s10008-020-04734-8
Shi J M, Liu G Z, Weng W, Cai L T, Zhang Q, Wu J H, Xu X X, Yao X Y. Co3S4@Li7P3S11 Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(12):14079-14086. doi: 10.1021/acsami.0c02085
Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Li H, Chen L Q, Xu X X. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life[J]. Nano Lett., 2016,16(11):7148-7154. doi: 10.1021/acs.nanolett.6b03448
Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, Tu J P. Rational Coating of Li7P3S11 Solid Electrolyte on MoS2 Electrode for All-Solid-State Lithium Ion Batteries[J]. J. Power Sources, 2018,374:107-112. doi: 10.1016/j.jpowsour.2017.10.093
Takada K, Ohta N, Zhang L, Xu X X, Hang B T, Ohnishi T, Osada M, Sasaki T. Interfacial Phenomena in Solid-State Lithium Battery with Sulfide Solid Electrolyte[J]. Solid State Ionics, 2012,225:594-597. doi: 10.1016/j.ssi.2012.01.009
Woo J H, Travis J J, George S M, Lee S H. Utilization of Al2O3 Atomic Layer Deposition for Li Ion Pathways in Solid State Li Batteries[J]. J. Electrochem. Soc., 2015,162(3):A344-A349. doi: 10.1149/2.0441503jes
Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R Z, Osada M, Sasaki T. Interfacial Modification for High-Power Solid-State Lithium Batteries[J]. Solid State Ionics, 2008,179(27/28/29/30/31/32):1333-1337.
Lee S H, Yoon C S, Amine K, Sun Y K. Improvement of Long-Term Cycling Performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 Coating[J]. J. Power Sources, 2013,234:201-207. doi: 10.1016/j.jpowsour.2013.01.045
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Qiuyu Ming , Huijun Jiang , Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020